TRANSPORT, MINING AND BUILDING MACHINERY ENGINEERING
Introduction. The unit of continuous action for the formation of the underlying layer is designed to increase labor productivity in the construction of roads and other objects, for the construction of which it is necessary to remove the upper layer of soil. The working bodies of the unit are buckets that cut and transport soil. To balance these forces and moments in the transverse-vertical plane, relative to the direction of movement of the buckets, support bars with support hydraulic cylinders are used. To create and regulate the pressure in the support hydraulic cylinders, two hydraulic pneumatic accumulators for controlling the supporting strips are installed on the power device. Part of the forces and moments through the supporting strips, support hydraulic cylinders, the frame of the working part of the unit is transmitted to the energy device that serves to drive the unit. During the operation of the unit, the resistance of the soil to cutting changes continuously. Therefore, the forces and moments transmitted to the energy device change. During operation, the stability of the rectilinear course of the unit is necessary. To ensure the stability of the movement of buckets and the direction of movement of the unit, you should first consider the process of filling the buckets with soil.
The method of research. On the basis of the constructive layout, the number of buckets filled with soil was revealed. Suppose the filling of buckets with soil occurs gradually and evenly. Hence, an increase in the load on the right and left support bar was revealed by each subsequent bucket as it is filled. By adding the vertical forces, the value and position of the total load on the supporting bars are determined. The resistance to the movement of the left and right wheels of the working part of the unit, due to the load from the buckets to the supporting strips, the gravity of the raised soil, the gravity of the working part of the unit, is determined. The total horizontal force, the impact of soil on the buckets, directed along the course of the unit, was revealed. The method of calculating the position of the thrust vector of the energy device is given.
Results. On the basis of the developed technique, the diameters of the support hydraulic cylinders and the nominal pressure in the hydraulic pneumatic accumulators of the control of the right and left support strips were determined. A constructive layout of the hinged energy device and a system for automatic adjustment of the position of the thrust vector of the energy device depending on the properties of the developed soil is proposed.
Conclusion. On the basis of theoretical studies, the diameters of the support hydraulic cylinders and the nominal pressure in the hydraulic pneumatic accumulators of the control of the right and left support strips were calculated. An example of calculating the position of the thrust vector of an energy device is given. The constructive arrangement of the system of automatic adjustment of the position of the thrust vector of the energy device depending on the properties of the developed soil and the general layout of the energy device is proposed. The conducted theoretical studies allow to ensure the stability of the movement of buckets and the direction of movement of the continuous unit for the formation of the underlying layer of roads.
TRANSPORT
Introduction. The article presents an analysis of researches on the operation of public transport vehicles with an electric drive. Electric buses have been tested in megacities, and despite the advantages, problems were identi- fied both in the selection of the charging type, technological features and with the availability and operation of the charging infrastructure. The operation process is associated with a number of technical restrictions, which in prac- tice make it difficult to select routes for the electric bus operation. The aim of the study is to develop an algorithm for selecting a rational regular urban route for the electric bus operation and to test it on the example of the route network of Tyumen.
Materials and methods. A structural diagram of the factors influencing the selection of the route for the electric bus operation has been formed. As a result of processing expert assessments, the most significant factors were identified. The diagram of the interconnections of these factors is identified and limitations for the algorithm are for- mulated based on the theory of systems analysis. The algorithm for selecting the rational regular urban route for the electric bus operation has been developed. It enables creating the simulation model for selecting a rational regular urban route for the operation of an electric bus.
Results. The diagram of factors influencing the selection of a rational regular urban route for the operation of an electric bus, taking into account their mutual relations, has been formed. The algorithm and simulation model for se- lecting a rational regular urban route for the operation of an electric bus has been developed. Several urban routes in Tyumen were assessed for the rationality of the introduction of electric buses.
Discussion and conclusions. Evaluation of five regular urban routes in Tyumen using the developed algorithm and the simulation model revealed three rational routes, and also showed the inefficiency of the other two. It due to the discrepancy between the duration of the charging session and breaks in operation, as well as the insufficient charge level of the traction battery to ensure the required autonomous movement of the vehicle. In the course of the continuation of these studies, the developed algorithm will be supplemented with the stage of economic assess- ment of routes for the operation of electric buses.
Introduction. In the process of chrome plating of car parts, there is a change in the composition of the chrome plating bath, which affects the stability of the ongoing processes – the performance and quality of the chrome coating. Therefore, it is necessary to constantly monitor the chrome plating bath for the presence of foreign elements that can be formed during the operation of the bath during the reaction of the solution with the anode or cathode.
Materials and methods. During the research, the necessary equipment was used, which made it possible to determine with sufficient accuracy the content of trivalent chromium and its effect on the electrolysis process – the performance and quality of chrome coatings. A well-known technique was used to determine the quality and performance.
Results. When conducting studies of the obtained cold self-regulating chromium plating electrolyte, it was found that trivalent chromium has a significant effect on the stability of the chromium plating bath. The content of which can vary within 2...25 g/l during operation. As a result, it was found that the optimal amount of trivalent chromium is its content in the chromium plating bath from 2 to 15 g/l. With a lower or higher content, the electrolysis performance and the quality of the chrome coating decrease. It was also found that in order to maintain the optimal amount of trivalent chromium and increase the time for stable operation of the chromium bath, it is necessary to observe the ratio of the area of the anode and cathode (the coated surface of the part), the value of which is within 3...4.
Discussion and conclusion. As a result of the conducted research, it will make it possible, under certain conditions, to carry out the process of chromium deposition from a cold self-regulating electrolyte, which will allow for stable chromium deposition at high productivity and the necessary quality of the coatings obtained. The main condition is to control and maintain the amount of trivalent chromium in the chromium plating electrolyte in the bath.
Introduction. One of the main types of deposits in an internal combustion engine is an emulsion or sludge formed by water, decomposition of fuel residues and solid residues. The sludge usually settles on the colder surfaces of the engine, such as the bottom of the crankcase pan, valve chambers and upper boards. The main problem is that this type of deposits can be collected by the engine oil and transferred to areas such as the oil pump, intake valve or oil channels, where the sludge can interfere with the flow of oil and cause a failure of the lubrication mode. In addition to the disruption in the operation of the above-mentioned systems, the engine oil quality indicators are also undergoing changes for the worse.
Materials and methods. To monitor the condition of the engine oil, it is necessary to determine the characteristics of its performance, such as: kinematic viscosity at 40 oC and at 100 oC, acid number, base number and determine the number of elements – indicators of additives and wear products contained in the engine oil. The viscosity was determined using a Stabinger SVM 3000 viscometer. It measures the dynamic viscosity and density of oils and fuels in accordance with ASTM D7042 and automatically calculates the kinematic viscosity, viscosity index and outputs the measurement results. The acid and base numbers were determined using an automatic titrator TitroLine alpha plus, and the presence of indicator elements in engine oil using an inductively coupled plasma optical emission spectrometer of the iCAP 7000 series, designed for analysis and determination of the number of indicator elements in liquid and solid samples.
Results. The dynamics of changes in the performance characteristics of the Gazpromneft Diesel Ultra 10W-40 engine oil with an extended replacement interval, which is applicable for equipment operating in severe conditions, depending on the water content in the samples of this lubricant, was analyzed.
Conclusion. The consequences that may occur due to water entering the engine oil are indicated.
Introduction. The existing methodology of personnel training determines the requirements for the competencies of future specialists, but the methods for determining the number of trained specialists are based either on the readiness of educational institutions for the quality management of the educational process, or are limited to the level of a motor transport enterprise, and do not take into account the regional needs of the labor market. The system of personnel training for the regional road transport complex is unbalanced in relation to the needs of this complex. This is due to the urgency of developing an enlarged methodology for determining the needs of the region’s motor transport complex (ATCR) in specialists with specialized education.
Materials and methods. The paper uses the method of questioning economic entities engaged in road transport activities not only as the main focus, but also as an auxiliary one. The survey is aimed at determining the share of employees of motor transport enterprises and departments of various industries, taking into account the level of specialized education. The provisions of the theory of technical operation of cars and methods of mathematical statistics are used in the work.
Results. The main result of the work is an enlarged methodology for determining the needs of the motor transport complex for specialists with specialized education, which differs from the known ones in that it takes into account the quantitative characteristics of personnel, taking into account the level of education in the economic entities of the region of various organizational and legal forms. These results represent the scientific novelty of the study. The structural characteristics of the personnel are determined, the corresponding algorithm is developed. The comparative values of labor productivity of specialists with specialized motor transport education are given.
Discussion and conclusions. The methodological tools for determining the needs of the regional motor transport complex in specialists with specialized education have been developed, which allows overcoming the existing imbalance between the system of personnel training for the regional motor transport complex and the needs of this complex. The application of the results of the work will increase the validity of the state task for the training of specialists in the motor transport profile in the regions, increase the efficiency of using budget funds and public funds for educational activities.
CONSTRUCTION AND ARCHITECTURE
Introduction. In recent years, there has been an active development of 3D additive technologies. This trend could not but affect the construction industry. However, printing using plastics and other organic compounds differs significantly in its technological features from printing with building compounds. Concrete and mortars used in layer-by-layer printing must have a number of technological properties, such as sufficient viscosity for extrusion by an extruder, low mobility to maintain geometry after laying, high setting speed and strength after hardening. Currently, there are a number of compositions that meet these requirements, however, they, as a rule, are not distinguished by high strength and require a wide raw material base, which may not be available in field printing conditions. As a result, it is necessary to expand the range of building materials for 3D printing, suitable for the above criteria, as well as satisfying economic indicators.
Materials and methods. Research has been carried out using physical and mechanical tests, X-ray phase analysis and electron microscopy on the effect of finely ground mineral additives on the microstructure and hardening processes of composite binders with various dosages of functional additives.
Results. The results of studies on the production of composite binders for 3D additive technologies using Portland cement and man-made waste - waste of wet magnetic separation of the Stary Oskol electrometallurgical plant, modified with additives accelerators (Technonikol Master) and plasticizers (Polyplast PK-R) using mathematical planning and construction of mathematical models for composite binders with different hardening times are pesented.
Conclusion. The efficiency of using the obtained composite binder has been proven, the use of which provides an increase in rheological properties, and also makes it possible to save expensive portland cement.
Introduction. Based on the trends, the growing interest in VR technology in construction can be traced. This relatively new technology is rapidly replacing traditional visualization methods, providing users with an enhanced digital experience. The aim of the work is to analyze the application of virtual reality technology in construction, based on the analysis, determine how to improve integration and find new ideas for the application of technologies.
Methods and materials. As a result of the analysis of previous studies, it was revealed that there are no methods for transferring data from the VR system to the BIM software. In connection with the identified problem, the goal of this scientific work is to improve the integration of VR and BIM technologies by automatically transferring data from a virtual reality program to the original information model.
Results. In the course of the work, a project was created based on a BIM model made in the Autodesk Revit software package and imported into the Unreal Engine 4 game engine to create an interactive virtual environment. A new approach to the creation and presentation of a project sketch using virtual reality technology is considered - a method of intuitive design in a virtual environment.
Discussion and conclusion. The software module is at the stage of early development; nevertheless, it has prospects for development into a full-fledged application available to any user. The paper provides the main directions for the continuation of the application development.
Introduction. The fight against underflooding remains an urgent problem. The application of the analogy between water filtration and electric current has the goal of protecting the environment, built-up areas and, in particular, highways in cities from underflooding. Writing Ohm’s law similarly to Darcy’s filtration law, we achieve a better match to their analogy. This, in turn, makes it possible to develop new technologies for protection against underflooding in urban construction, for example, electroosmotic dewatering and its modeling. Such technologies make it possible to drain clayey soils.
Methods and materials. Darcy’s law, Ohm’s law and the law of electroosmotic filtration are considered together. A methodology for modelling construction dewatering is given, taking into account the combined effect of the two physical laws of water filtration and electroosmosis, optimally combining the high-altitude geometric arrangement of drainage bases and contact electrodes. The options for draining clay soil under the action of an electric field are presented. With the combined use of gravitational forces and electric direct current forces in the drained soil, the total filtration rate is the sum of the Darcy’s law component and another component of the water velocity – electroosmotic filtration. An additional feature of joint modelling in a porous medium of water filtration and electroosmosis is that the mass of the water-resistant part of the soil and its part related to the dielectric may not coincide. This complexity of the model is overcome by dividing it into modules, which can then be combined in compliance with the balance principle, stitching modules along the boundaries. To continue the scientific discussion, a short but informative overview of international publications on the topic under consideration is given.
Discussion. The methodology for complex calculation and modelling of the joint processes of water filtration in soils, the flow of electric current and electroosmotic filtration can find useful application in the development of effective protection against underflooding in urban construction. a sequence of algorithmic modelling steps is recommended. initially, it is recommended to run rough spreadsheet simulations on personal computers and mobile phones. next, a different modelling approach should be applied. based on the initial rough models of the previous step, it is necessary to write the algorithms in the programming language. the compiled model of the investigated filtration and electroosmosis processes will significantly increase the reliability of the design of protection against underflooding.
conclusion. a comparison is made of the joint use of construction dewatering means of different physical essence, with simultaneous processes of gravitational filtration of underground water and passing a direct electric current through the drained soil, which causes an additional effect of electroosmosis. it is proposed to apply in a new way the analogy of water filtration and electric current in order to achieve more effective results of engineering activities by modeling protection against underflooding of building areas, ensuring the safety of urban construction when the level of groundwater rises.
ISSN 2658-5626 (Online)