EXPERIMENTAL CONFIRMATION OF EQUATIONS’ ADEQUACY OF GEOMETRIC CONNECTIONS IN THE MUNICIPAL MACHINE WITH THE BRUSH WORKING BODY PARALLELOGRAPHIC SUSPENSION
https://doi.org/10.26518/2071-7296-2018-6-834-843
Abstract
Introduction. The authors arise the question of increasing the efficiency of the municipal machine. Moreover, the influence of the clamping force of the brush body on the surface and on the brush deterioration and, as a consequence, on the quality of the roadway cleaning is highlighted in the article.
Methods and materials. The results of the changing process of the brushing tool vertical coordinate in the municipal machine were presented, depending on the displacement of the hydraulic cylinder rod. The analysis of the existing types of the brushing working body suspension was carried out. As a result of such analysis, the authors established the most frequent usage of the three-point and parallelogram suspensions, the schemes of which were also presented in the article.
Results. The equations of geometrical connections of the municipal machine elements, which could be used in mathematical model, are presented. In addition, the kinematic diagram of the municipal machine with the brush working body suspension is drawn up. Therefore, the presented model takes into account such parameters as the length of the levers’ arms, the linear movements of the hinges, the rod stroke, the levers’ angles and the distances between the hinges. The methods and the course of the experiment for determining the displacement dependence of the brush body from the displacement of the hydraulic cylinder rod are described. The authors also present the photographs of the experimental research fragments.
Discussion and conclusions. On the basis of the obtained data, the authors construct the experimental and theoretical dependences’ graph of the brush body displacement and the actuator hydraulic cylinder rod displacement. The analysis of such graphs confirms the adequacy of the geometric constraint equations and also proves that these equations could be used in the mathematical model of the position controlling process of the brush operating body and also for determination the optimum value of the brush working element clamping force to the surface.
About the Authors
S. D. IgnatovRussian Federation
Candidate of Technical Sciences, Associate Professor of the Department of Engineering for the Construction and Service of Oil and Gas Complexes and Infrastructures
644080, Omsk, 5, Mira Ave.
S. I. Tsekhosh
Russian Federation
Postgraduate Student of the Automation of Production Processes and Electrical Engineering Department
644080, Omsk, 5, Mira Ave.
References
1. Shcerbakov V.S., Belyayev N.V., Belyayev V.V. Sistema avtomatizatsii eskiznogo proyektirovaniya avtogreydera [Automated design sketch automation system]. Omsk, SibADI, 2009. 133 p. (in Russian)
2. Shcerbakov V.S., Belyayev N.V., Skuba P.YU. Avtomatizatsiya proyektirovaniya planirovochnykh mashin na baze kolesnykh traktorov [Automation of planning machines based on wheeled tractors]. Omsk, SibADI, 2013. 125 p. (in Russian)
3. Lazuta I.V. Sistema avtomatizatsii modelirovaniya buldozernogo agregata [Automation system for the dozer unit modeling]. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2009, no 8, pp. 72. (in Russian)
4. Balovnev V.I. Modelirovaniye protsessov vzaimodeystviya so sredoy rabochikh organov dorozhno-stroitelnykh mashin [Design of processes of co-operating with the environment of the trailbuilders’ working organs]. Moscow, Engineer, 1994. 432 p. (in Russian)
5. Vasilyev A.A. Dorozhnyye mashiny [Travelling machines]. Moscow, Engineer, 1987. 416 p. (in Russian)
6. Balovnev V.I. Dorozhno-stroitelnyye mashiny i kompleksy [Trailbuilders and complexes]. Omsk, 2001.528 р. (in Russian)
7. Fedorov D.I. Rabochiye organy zemleroynykh mashin [Working organs of earthmovers]. Moscow, Engineer, 1977. 288 p. (in Russian)
8. Koshelev YU.V., Sogin A.V., Sokolov D.A., SHarov D.V., Metodika opredeleniya sil soprotivleniya dvizheniyu otvala snegouborochnoj tekhniki [Method of determining the forces of resistance to the movement of the snowplow blade]. Fundamental’nye issledovaniya, 2014, no 8-5, pp.1048-1052. (in Russian)
9. Kokorin A.V., Suharev R.YU. Matematicheskaya model processa upravleniya rabochim organom dorozhnoj frezy [Mathematical model of the management process of the road mill working body]. Vestnik voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2009, no10, pp. 147. (in Russian)
10. Lazuta I.V., Lazuta E.F. Dinamicheskaya model buldozera s poluzhestkoj podveskoj [Dynamic semi-stiffer bulldozer model]. Vestnik SibADI, 2015, no1, pp. 41. (in Russian)
11. Hmara L.A. Nauchnoe soprovozhdenie stroitel’nyh i dorozhnyh mashin: issledovanie, raschet, sozdanie, vybor, ispol’zovanie [Scientific support of construction and road machines: research, calculation, creation, selection, usage]. Vestnik Pridneprovskoj gosudarstvennoj akademii stroitel’stva i arhitektury, 2015, no 7-8, pp. 209. (in Russian)
12. Radchenko S.G. Mnogofaktornyie planyi eksperimentov dlya sovmestnogo provedeniya optimizatsii i modelirovaniya [Multifactorial plans for experiments on joint optimization and modeling]. Matematicheskie mashiny i sistemy, 2013, no 3, pp. 124. (in Russian)
13. Adler YU.P., Markova E.V., Granovskiy YU.V. Planirovaniye eksperimenta pri poiske optimalnykh usloviy [Planning an experiment by searching for optimal conditions]. Moscow, Nauka, 1971. 247 p. (in Russian)
14. Krupin A.E., Zuykov D.V. Otseivanie faktorov pri planirovanii eksperimenta [Screening factors by planning an experiment]. Vestnik Nizhegorodskij gosudarstvennyj inzhenernoehkonomicheskij universitet, 2014, no 4, pp. 62. (in Russian)
15. Lapach S.N., Radchenko S.G. Osnovnyie problemyi postroeniya regressionnyih modeley [Main problems of building regression models]. Matematicheskie mashiny i sistemy, 2012, no 4, pp. 125. (in Russian)
16. Nalimov V.V. Teoriya eksperimenta [Theory of experiment]. Moscow, Nauka, 1971. 260 p. (in Russian)
17. Lapach S.N. Planirovanie v passivnom eksperimente [Planning in a passive experiment]. Matematicheskie mashiny i sistemy, 2013, no 4, pp. 156. (in Russian)
18. Panenko V.V. Matematicheskiye metody planirovaniya eksperimenta [Mathematical methods of experiment planning]. Novosibirsk, Nauka, 1981. 257 p. (in Russian)
19. Popov S.A. Povyishenie tochnosti otsenivaniya na osnove planirovaniya eksperimenta [Improving estimation accuracy based on experiment planning]. Vestnik Novgorodskij gosudarstvennyj universitet, 2016, no 4, pp. 53. (in Russian)
20. Dzhonson N., Lion F. Statistika i planirovaniye eksperimenta v tekhnike i nauke: metody obrabotki dannykh [Statistics and experiment planning in engineering and science: data processing methods]. Moscow, Mir, 1980. 595 p. (in Russian)
21. Panfilov G.V., Nedoshivin S.V., Kalinin S.S. Planirovanie i pervichnaya obrabotka rezultatov staticheskogo mashinnogo eksperimenta osnove mnojestvennogo korrelyatsionno-regressionnogo analiza [Planning and initial processing of the results of the static computer experiment based on multiple correlation and regression analysis]. Izvestiya TulGU. Tekhnicheskie nauki, 2014, no 7, pp. 20. (in Russian)
Review
For citations:
Ignatov S.D., Tsekhosh S.I. EXPERIMENTAL CONFIRMATION OF EQUATIONS’ ADEQUACY OF GEOMETRIC CONNECTIONS IN THE MUNICIPAL MACHINE WITH THE BRUSH WORKING BODY PARALLELOGRAPHIC SUSPENSION. The Russian Automobile and Highway Industry Journal. 2018;15(6):834-843. (In Russ.) https://doi.org/10.26518/2071-7296-2018-6-834-843