THE PECULIARITIES OF THERMAL INDUCEMENT VENTILATION SYSTEMS
https://doi.org/10.26518/2071-7296-2017-6(58)-78-84
Abstract
Introduction. For increasing the efficiency of natural ventilation systems, it is possible to use the thermal incentives - additional heating of the exhaust ventilation duct, which allows to expand temperature difference between ambient and exhaust air and to increase the circulation effect. This method enables stable air exchange in hot period, independently of the wind direction force. However, existing systems have several limitations of application in the high-rise apartment building in countries with a cold climate. The aim of the study is to develop a thermal inducement ventilation systems, suitable for typical residential apartment buildings in russian climate.
Results. The article theoretically proves the disadvantages of existing thermal inducement ventilation systems. The article also presents the results of numerical modeling of natural convection currents in the high-rise apartment building. The dependence of outlet velocity on temperature difference for various heating methods is proved on the basis of the research.
Conclusion. The results of the research illustrate the high level of the heating area location influence on free convection currents in vent duct.
About the Author
D. V. AbramkinaRussian Federation
PhD student, ResearcherID: V-5307-2017, Lecturer, Department of Ventilation and Heat and Gas Supply
129337, 26, Yaroslavskoe shosse, Russia, Moscow
References
1. Kharitonov V.P. Estestvennaya ventilyatsiya s pobuzhdeniem [Natural ventilation with motivation]. AVOK, 2006, no 3, pp. 46 – 55.
2. Engel P.VD., Kemperman R., Doolaard H. Natural and hybrid ventilation principles based on buoyancy, sun and wind / P. VD. Engel, R. Kemperman, H. Doolaard // REHVA Journal – 2012. - №4. – pp. 25-32.
3. Tsakanyan O.S., Goloshchapov V.N., Kravchenko O.V. Svobodno-konvektivnoe dvizhenie sredy v vertikal’no raspolozhennom kanale s diskretnymi istochnikami teploty [Free-convective motion of the medium in a vertically located channel with discrete heat sources]. Problemy mashinostroeniya, 2013, Vol.16, no 2, pp. 19 – 29.
4. Rymarov A.G., Abramkina D.V. Sistemy estestvennoi ventilyatsii s teplovym pobuzhdeniem [Natural ventilation systems with thermal motivation]. Nauchnoe obozrenie, 2016, no 9, pp. 43 – 46.
5. Wang L., Li N. Valuation of buoyancy-driven ventilation in respect of energy utilization // Energy and Buildings. – 2010. – Vol. 42. – No. 2. – pp. 221–229.
6. Bansal N.K. Solar chimney for enhanced stack ventilation / N.K. Bansal, R. Mathur, M. Bhandari // Building and environment – 1993. – Vol. 28. - № 3. – pp. 373-377.
7. Bansal N.K. A study of solar chimney assisted wind tower system for natural ventilation in buildings // Building and Environment – 1994. – Vol.29. - №4. – pp. 495-500.
8. Hirunlabh J. New configurations of a roof solar collector maximizing natural ventilation / J. Hirunlabh // Building and Environment – 2001. - Vol. 36. - №. 3. - pp. 383-391.
9. Lal S. Solar chimney: a sustainable approach for ventilation and building space conditioning / S. Lal, S.C. Kaushik, P.K. Bhargav // International Journal of Development and Sustainability – 2013. – Vol.2. - № 1. – pp. 277-279
10. Mehani I., Settou N. Passive Cooling of Building by using Solar Chimney // World Academy of Science, Engineering and Technology International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering. – 2012. – Vol. 6. – No. 9. – pp. 735–736.
11. Gan G. A numerical study of solar chimney for natural ventilation of buildings with heat recovery // Applied Thermal Engineering. – 1998. – Vol. 18. – No. 12. – pp. 1171–1187.
12. Belova E.M. Zdanie bioklimaticheskoi arkhitektury – «Gorodskie vorota Dyussel’dorfa» [Building of bioclimatic architecture - «City gate of Dusseldorf»]. AVOK, 2006, no 3, pp. 20 – 29.
13. Kleiven T. Natural ventilation in buildings: architectural concepts, consequences and possibilities: PhD thesis / Tommy Kleiven – Norwegian University of Science and Technology, 2003. – 305 p.
14. Gershuni G.Z., Zhukhovitskii E.M., Nepomnyashchii A.A. Ustoichivost’ konvektivnykh techenii [Stability of convective currents]. Nepomnyashchii, Moscow, Nauka, 1989. 320 p.
15. Ostroumov G.A. Svobodnaya konvektsiya v usloviyakh vnutrennei zadachi [Free convection under internal conditions] / G.A. Ostroumov. – M.-L.: GITTL, 1952. – 286 p.
16. Trufanova N.M., Navalikhina E.Yu., Markovskii M.V. Matematicheskoe modelirovanie nestatsionarnykh protsessov teplomassoperenosa v pryamougol’nom kabel’nom kanale. [Mathematical modeling of non-stationary processes of heat and mass transfer in a rectangular cable channel]. VESTNIK PNIPU, 2014, no 11, pp. 55 – 66.
17. Obula Reddy Kummitha, Pandey K.M. Experimental and numerical analysis of forced convection heat transfer in turbulent flows / Obula Reddy Kummitha, K.M. Pandey // Procedia Engineering – 2015. - №127. – pp. 711-718.
18. Mashenkov A.N., Kosolapov E.A. O metodakh chislennogo resheniya dvumernykh uravnenii Bussineska dlya svobodnoi konvektsii. [Methods for the numerical solution of the two-dimensional Boussinesq equations for free convection]. Academia, Arkhitektura i stroitel’stvo, 2010, no 3, pp. 292 – 296.
19. Kuznetsov G.V., Maksimov V.I., Sheremet M.A. Estestvennaya konvektsiya v zamknutom parallelepipede pri nalichii lokal’nogo istochnika energii. [Natural convection in a closed parallelepiped in the presence of a local energy source]. Prikladnaya mekhanika i tekhnicheskaya fizika, 2013, Vol. 54, no 4. pp. 86 – 95.
20. Varapaev V.N. Matematicheskoe modelirovanie kombinirovannogo teploobmena pri estestvennoi konvektsii vozdukha v nezamknutykh oblastyakh [Mathematical modeling of combined heat transfer in natural convection of air in nonclosed areas]. Vestnik MGSU, 2010, no 1, pp. 248 – 254 .
Review
For citations:
Abramkina D.V. THE PECULIARITIES OF THERMAL INDUCEMENT VENTILATION SYSTEMS. The Russian Automobile and Highway Industry Journal. 2017;(6(58)):78-84. (In Russ.) https://doi.org/10.26518/2071-7296-2017-6(58)-78-84