Preview

The Russian Automobile and Highway Industry Journal

Advanced search

APPLICATION OF NONGAUSSIAN STATISTICAL MODELS IN THE PROBLEMS OF TECHNICAL OPERATION OF VEHICLES

https://doi.org/10.26518/2071-7296-2017-3(55)-81-86

Abstract

The basic methods for approximating the elementary functions of the probability distribution density of a random sample from the general set of statistical material used in the field of operational reliability of cars are analyzed. It was proposed to use the Johnson and Pearson distribution systems to describe non-Gaussian experimental data, which allow us to describe practically any unimodal distributions. The effectiveness of the use of these distribution systems was investigated by statistical modeling. Results of approbation of statistical models on real data are presented.

About the Authors

V. A. Korchagin
FGBOU VO “Lipetsk GTU”
Russian Federation

Viktor Alekseevich Korchagin – Doctor of Technical Sciences, Professor, Head of the Department “Motor Transport Management” 

(398600, Lipetsk, 30 Moskovskaya St.)



V. I. Ignatenko
FGBOU VO “Lipetsk GTU”
Russian Federation

Vladimir Ilyich Ignatenko – Candidate of Technical Sciences, Associate Professor, Department of Automobile Transport Management 

(398600, Lipetsk, 30 Moskovskaya St.)



D. K. Sysoev
Institute of Service, Tourism and Design (branch) of the Federal North-Caucasian Federal University
Russian Federation

Dmitriy Konstantinovich Sysoev – Candidate of Technical Sciences, Associate Professor 

(357500, Pyatigorsk, Yermolov Str. Building, building A)



References

1. Tehnicheskaja jekspluatacija avtomobilej [Technical exploitation of cars]. Moscow, Nauka, 2001, 535 p.

2. Kendall M., Stjuart A. Teorija raspredelenij [Theory of distributions]. Moscow, Mir, 1966, 588 p.

3. Bendat Dzh., Pirsol A. Prikladnoj analiz sluchajnyh dannyh [Applied Analysis of Random Data]. Moscow, Mir, 1989, 540 p.

4. Popov A.V., Kolesnik I.N. Razrabotka metoda postroenija negaussovskih statisticheskih modelej jekspe-rimental’nyh dannyh [Development of a method for constructing non-Gaussian statistical models of experimental data]. Radioelectronic and computer systems, 2009, no. 3 (37), pp. 33-39.

5. Han G., Shapiro S. Statisticheskie modeli v inzhenernyh zadachah [Statistical models in engineering problems]. Moscow, Mir, 1969, 395 p.

6. Bostandzhijan V. A. Raspredelenie Pirsona, Dzhonsona, Vejbulla i obratnoe normal’noe. Ocenivanie ih parametrov [Distribution of Pearson, Johnson, Weibull and the inverse normal. Evaluation of their parameters]. Chernogolovka, Editorial and Publishing Department of IPCP RAS, 2009, 240 p.

7. Karpov I. G., Zyrjanov Ju. T., Gribkov A. N. raspredelenija Dzhonsona i ih primenenie dlja approk-simacii zakonov raspredelenija jeksperimental’nyh dannyh [Modified Johnson distributions and their application for approximating the distribution laws of experimental data]. Bulletin of the Tomsk Polytechnic University, 2013, T. 322, no. 2, pp. 46-50.

8. Korchagin V.A., Ignatenko V.I. Matematicheskaja model’ vybora racional’nyh rezhimov tehnicheskogo ob-sluzhivanija avtomobilej [A mathematical model of the choice of rational modes of technical maintenance of cars]. Agrarian Scientific Journal, 2016, no. 8, pp. 36-41.

9. Diagnostika i tehnicheskoe obsluzhivanie mashin: uchebnik dlja vuzov [Diagnostics and maintenance of cars: a textbook for universities]. Moscow, «Akademiya» Publishing Center, 2008, 432 p.

10. Cheboksarov, A. N. Reliability as a criterion for the efficiency of diagnosing transport and technological machines [Dostovernost’ kak kriterij jeffektivnosti diagnostirovanija trans-portnyh i tehnologicheskih mashin]. Vestnik SibADI, 2016, no. 5 (51), pp.89-94.


Review

For citations:


Korchagin V.A., Ignatenko V.I., Sysoev D.K. APPLICATION OF NONGAUSSIAN STATISTICAL MODELS IN THE PROBLEMS OF TECHNICAL OPERATION OF VEHICLES. The Russian Automobile and Highway Industry Journal. 2017;(3(55)):68-74. (In Russ.) https://doi.org/10.26518/2071-7296-2017-3(55)-81-86

Views: 745


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-7296 (Print)
ISSN 2658-5626 (Online)