Study of stability loss of cylindrical shell made of composite material
https://doi.org/10.26518/2071-7296-2021-18-3-342-350
Abstract
Introduction. Composite materials are used in the construction of transport infrastructure facilities, buildings and structures for various purposes, in housing and communal services. Calculation of structures made of composite materials is used in the field of stress-strain state, buckling, analysis of material under tension, the effect of cracks on the state of these structures. The main properties of composite materials and a method of manufacturing a cylindrical shell structure from a composite material are considered. The total number of winding options is calculated using the combinatorial method.
Materials and methods. A composite cylindrical shell with a radius of R = 300 mm and a height of H = 600 mm was chosen as the object of research. The creation of a model of a cylindrical shell in a finite element analysis package is described. An axial compressive load acting on the shell with a force of F = 100 kN is specified. Determination of the critical force ratio.
Results. The results of the analysis of the loss of stability of the cylindrical shell are obtained and the graphs of the dependence of the critical force on the options for laying the layers are presented. Depending on the magnitude of the critical force and the form of buckling, the most and least favorable options for laying layers in a composite material package have been determined.
Discussion and conclusions. A conclusion is made of the dependence of the critical force on the combination of stacking layers in the composite.
About the Authors
L. A. AdegovaRussian Federation
Ludmila A. Adegova, Cand. of Sci., Scopus Author ID: 57213838719, Associate Professor of the Construction Mechanics Department.
Novosibirsk, Leningradskaia, 113, tel. +79139535775
M. V. Bobrysheva
Russian Federation
Maria V. Bobrysheva, coauthor, student.
Novosibirsk, Leningradskaia, 113
A. E. Scherbinina
Russian Federation
Alexandra E. Scherbinina, student.
Novosibirsk, Leningradskaia, 113
References
1. Tsygvintsev I.V., Postnikova P.I., Sentsov I.V. Primenenie kompozicionnyh materialov v stroitel’stve [Application of composite materials in construction] // Innovative development. 2017: 26-29 (In Russian)
2. Malakhovskiy S. S., Panafidnikova A. N., Kostromina N. V., Osipchik V. S. Ugleplastiki v sovremennom mire: ih svojstva i primenenija [Carbon fiber reinforced plastics in the modern world: their properties and area of application] // Advances in chemistry and chemical technology. 2019. 33. 6(216): 62-64 (In Russian)
3. Korbova A. A. Proektirovanie legkoj katernoj nadstrojki iz polimernyh kompozicionnyh materialov [Development of lightweight polymeric-composite superstructure for a fast boart] // Proceedings of Krylov State Scientific Center. 2020. 2: 242-249. (In Russian)
4. Samyn P., Van Schepdael L., Leendertz J. S., Gerber A., Van Paepegem W., De Baets P. Degrieck J. Deformation of reinforced polymer bearing elements on full-scale compressive strength and creep tests under yielding conditions // Polymer Testing. 2006: 230-245.
5. J. Quintelier, P. Samyn, P. De Baets, Tuzolana T., Van Paepegem W., Van den Abeele F., Vermeulen J. Wear behavior of carbon fiber-reinforced poly(phenylene sulfide) // Polymer Composites. 2006: 92-98.
6. Anoshkin A. N., Fedorovtsev D. I., Pisarev P. V., Osokin V. M. Raschet naprjazhenno-deformirovannogo sostojanija flanca iz polimernyh kompozicionnyh materialov s defektom v vide rassloenija [Calculation of stress-strain state of the flange made of polimer composites with a defect in the form of delamination] // PNRPU Aerospace Engineering Bulletin. 2015. 43: 116-130. (In Russian)
7. Kudryashov A. B., Kutyshov V. F. Metodika rascheta i proektirovanija stvorok ljukov letatel’nyh apparatov iz kompozicionnyh materialov [Methodology of calculation and design of aircraft hatch doors made of composite materials] // Scientific Notes of TsAGI. 1985. 16 (5): 74-83. (In Russian)
8. Kartashova E. D., Muizemnek A. Yu. Raschet mezhslojnyh naprjazhenij v kompozicionnyh obolochkah s dvojakoj polozhitel’noj kriviznoj [Calculation of interlayer stresses in composite shells with double positive curvature] // Bulletin of Penza State University. 2017. 2(18): 105-111. (In Russian)
9. Sofiyev A. H., Avcar M. The stability of cylindrical shells containing an FDM layer subjected to axial load on the pasternak foundation // Scientific research. 2010: 228-236.
10. Rah K., Van Paepegem W., Habraken A. M., Degrieck J. A mixed solid-shell element for the analysis of laminated composites // International Journal for Numerical Methods in Engineering. 2012: 805-828.
11. Aimenov Zh. T., Khudyakova T. M., Sarsenbayev B. K., Composite cements production and their economic and technological advantages // Industrial Technologies and Engineering (ICITE-2017). IV International Conference. 2017: 301-306.
12. Davletchin D. I. Kompozicionnye materialy dlja aviastroenija, jenergetiki, mashinostroenija [Composite materials for aviation, energetics, mechanical engineering] // Science-intensive Technologies. 2019. 20(2): 34-39. (In Russian)
13. Stepanova M. Y., Baurova N. I. Analysis of methods for determining the biostability of polymer composite materials used in mechanical engineering. Series D. 2020. 13(3): 345-348.
14. Neumeister J., Jansson S., Leckie F. The effect of fiber architecture on the mechanical properties of carbon/carbon fiber composites // Acta Materialia. 1996. 44(2): 573-585.
15. Vasilescu A., Gáspár S., Hayat A., Marty J.-L. Advantages of carbon nanomaterials in electrochemical aptasensors for food analysis. / / Electroanalysis. 2018. 30(1): 2-19.
16. Lamberti M., Pedata P., Sannolo N., Porto S., Caraglia M., De Rosa A. Carbon nanotubes: properties, biomedical applications, advantages and risks in patients and occupationally-exposed workers // International Journal of Immunopathology and Pharmacology. 2015. 28(1): 4-13.
17. Li C., Liu Z.-H., Zheng Y.-P. Effect of anisotropy of composite material plate on hole-edge stresses of rectangle hole // Jilin Daxue Xuebao (Gongxueban). 2007. 37(6): 1327-1331.
18. Rytova T. G. K voprosu poteri ustojchivosti predvaritel’no-naprjazhennyh tonkostennyh cilindricheskih obolochek [On the issue of loss of stability of pre-stressed thin-walled cylindrical shells] // I. Yakovlev Chuvash State Pedagogical University Bulletin. Series: Mechanics of limit state. 2019. 4(42): 111-118. (In Russian)
19. Popova A. P. Issledovanie ustojchivosti szhatoj anizotropnoj cilindricheskoj obolochki [Investigation of stability of compacted anisotropic cylindrical shell] // Actual problems of aviation and cosmonautics. 2018. 1: 266-268. (In Russian)
20. Artemyeva A. A., Baranova M. S., Kibets A. I., Romanov V. I., Ryabov A. I., Shoshin D. V. Konechno-jelementnyj analiz ustojchivosti uprugoplasticheskoj sfericheskoj obolochki pri vsestoronnem szhatii [Finite element analysis of the stability of an elastic-plastic spherical shell under comprehensive compression]. 2011. 3 (1): 158-162 (In Russian)
21. Kosytsyn S. B., Akulich V. Yu. Opredelenie kriticheskoj nagruzki poteri ustojchivosti sterzhnevoj i ploskoj modelej krugovoj cilindricheskoj obolochki, vzaimodejstvujushhej s osnovaniem [The definition of the critical buckling load beam model and two-dimensional model of the round cylindrical shell that interact with the soil]// Structural mechanics of engineering constructions and buildings. 2019. 15(4): 291-297. (In Russian)
22. Vasiliev V. V. To the Problem of Stability of a Cylindrical Shell in Axial Compression // Mechanics of Solids. 2011. 2: 5-15. (In Russian)
Review
For citations:
Adegova L.A., Bobrysheva M.V., Scherbinina A.E. Study of stability loss of cylindrical shell made of composite material. The Russian Automobile and Highway Industry Journal. 2021;18(3):342-350. (In Russ.) https://doi.org/10.26518/2071-7296-2021-18-3-342-350