Analysis of mathematical models for calculating following intervals in main flows the prevailing road conditions in the Russian Federation
https://doi.org/10.26518/2071-7296-2020-17-6-714-725
Abstract
Introduction. This paper presents the results of a study on the methods for calculating the capacity of level crossings. The purpose of writing this research paper is determine the best methodology for calculating the intervals in the main flows for the prevailing road conditions in the Russian Federation, that a new methodology to calculate capacity adapted to domestic road conditions would be developed in the future.
Materials and methods. In recent decades of market relations in the Russian Federation, one can note a rapid increase in motorization in human settlements. The number in 550 vehicles per 1000 people in domestic entities is expected to have been increasde by 2025, which is significantly higher than the current level in European part of the Russian Federation. It is important to note that when the number of vehiclec is increasing, which level is about 80%, it is essential to increase road crossings capacity.
Results. At the moment the methodology for calculating capacity and queue length is the same. It should be noted that the current models are not properly described in the domestic studies, but the calculations were made using models developed in the 1960s and 1970s.
About the Authors
A. Yu. MikhailovRussian Federation
Mikhailov Alexander Yurievich – doctor of Technical Sciences, Professor of the Department of Automobile Transport.
Irkutsk, Lermontova st. 83.
E. L. Popova
Russian Federation
Popova Ekaterina Leonidovna – postgraduate student of the department of road transport.
Irkutsk, Lermontova st. 83
References
1. Kravchenko P.A., Oleshchenko E.M. Sistemnyj podhod v upravlenii bezopasnost’ju dorozhnogo dvizhenija v Rossijskoj Federacii [A systematic approach to road safety management in the Russian Federation].Transport of the Russian Federation. 2018. No. 2 (75). S. 14-18. (in Russian)
2. Grabe W. performance determination of non-light signal controlled road traffic junctions // Research work from road traffic. 1954; 11.
3. Harders J. border and follow-up time gaps as a basis for calculating the performance of rural roads // Road construction and Road Traffic Engineering. 1968; 216.
4. Siegloch W. Die Leistungsermittlung an Knotenpunkten ohne Lichtsignalsteuerung // Strabenbau und Strabenverkehrstechnik. 1973; 154.
5. Brilon W. further development of the calculation methods for junctions without light signalling systems in the Federal Republic of Germany // International Workshop Kotenpunkte without light signal systems. Conference documents, Bochum March. 1988.
6. Grossmann M. methods for the calculation and assessment of performance and traffic quality at junctions without light signalling systems // Series of papers chair of traffic management Ruhr-Universität Bochum.1991. No 9.
7. Zhigadlo A.P., Dubynina M.G. Vlijanie psihofiziologicheskih osobennostej lichnosti voditelja na nadezhnost’ upravlenija transportnym sredstvom [Influence of psychophysiological characteristics of the driver’s personality on the reliability of vehicle control]. Bulletin of the Siberian Branch of the Academy of Military Sciences. 2018.No. 49. С.119-130. (in Russian)
8. Korchagin V.A., Lyapin S.A., Klyavin V.E., Sitnikov V.V. Povyshenie bezopasnosti dvizhenija avtomobilej na osnove analiza avarijnosti i modelirovanija DTP [Increasing the safety of vehicles based on the analysis of accidents and accident modeling]. Fundamental research. 2015; 6: 251-256. (in Russian)
9. Evtyukov S., Karelina M., Terentyev A. A method for multicriteria evaluation of the complex safety characteristic of a road vehicle. Transportation Research Procedia. 2018; 36: 149-156. DOI: org/10.1016/j.trpro.2018.12.057.
10. Evtyukov S., Repin S. Renewal Methods of Construction Machinery According to Technical and Economic Indicators // Applied Mechanics and Materials. 2015; 725-726: 990-995. URL: https://www.scientific.net/AMM.725-726.990. DOI: org/10.4028/www. scientific.net/AMM.725-726.990. (in Russian)
11. Valeriy Kapitanov, Valentin Silyanov, Olga Monina, Aleksandr Chubukov. Methods for traffic management efficiency improvement in cities. Transportation Research Procedia. 2018. Vol. 36. Pp. 252-259. DOI: org/10.1016/j.trpro.2018.12.077.
12. Domke E.R., Zhestkova S.A. Verojatnostnaja model’ tormozhenija kolesnoj mashiny [Probabilistic model of braking of a wheeled vehicle]. World of transport and technological machines. 2011. No. 2 (33): 3-7. (in Russian)
13. Brannolte U., Pribyl P., Silyanov V. Simulation of Regional Mortality Rate in Road Accidents Transportation Research Procedia. 2017; 20: 112-124. DOI: org/10.1016/j.trpro.2017.01.032.
14. Novikov I.A. Kravchenko A.A., Shevtsova A.G., Vasilyeva V.V. Nauchno-metodologicheskij podhod k snizheniju avarijnosti na dorogah Rossijskoj Federacii [Scientific and methodological approach to reducing accidents on the roads of the Russian Federation]. World of transport and technological machines. 2019; 3: 58-65. DOI: org/10.33979/2073-7432-2019-66-3-3- 8. (in Russian)
15. Evtyukov S.A. Vasiliev Ya.V. Dorozhno-transportnye proisshestvija: rassledovanie, rekonstrukcija, jekspertiza [Road traffic accidents: investigation, re-construction, expertise]. St. Petersburg, DNA, 2012. 392 p. (in Russian)
16. Trofimenko Yu.V. [and etc.]. Velosipednyj transport v gorodah [Cycling transport in cities]. Moscow, MADI, 2020.154 p. (in Russian)
17. Kurakina E., Evtiukov S, Ginzburg G. Systemic indicators of road infrastructure at accident clusters. Architecture and Engineering. 2020; 5(1): 51-58. DOI: org/10.23968/2500-0055-2020-5-1-51-58.
18. Kurakina E.V. Ob jeffektivnosti provedenija issledovanij mest koncentracii [On the effectiveness of research of the places of concentration of road accidents]. Bulletin of civil engineers of SPbGASU. 2018; 2 (67): 231-237. DOI: org/10.23968/1999-5571-2018-15- 2-231-23. (in Russian)
19. Kurakina E.V., Evtyukov S.S., Golov E.V. Rekonstrukcija dorozhno-transportnyh proisshestvij [Reconstruction of road traffic accidents]. St. Petersburg, Petropolis, 2017.204 p.
20. Sklyarova A.A., Sklyarov R.A., Khayrov V.V. Sovershenstvovanie mehanizacii proizvodstva rabot tehnologii GNB [Improvement of mechanization of production of HDD technology works]. Actual problems of modern construction: materials of the 72nd All-Russian scientific-practical conference of students, graduate students and young scientists in 2 hours. 2019; 2: 129- 135. (in Russian)
21. Sklyarova A.A., Sklyarov R.A., Shcherbakov A.P. Комплексная система оценки эффективности НТТМ при бестраншейной разработке грунта [Comprehensive system for assessing the effectiveness of NTTM in trenchless soil development]. Magistracy – motor transport industry: materials of the IV All-Russian interuniversity conference “Master’s hearings”. 2019; 1: 149-153. (in Russian)
22. Evtyukov S.A., Lutov D.A., Shimanova A.A. Upravlenie zhiznennym ciklom mashiny s cel’ju povyshenija jeffektivnosti ispol’zovanija parka mashin dlja zimnego soderzhanija dorog [Machine life cycle management with the aim of increasing the efficiency of using the fleet of cars for winter road maintenance]. Bulletin of civil engineers. 2017; 4 (63): 205-211. (in Russian)
23. Zhankaziev S.V., Vorobiev A.I., Morozov D.Yu. Tendencii razvitija avtonomnyh intellektual’nyh transportnyh sistem v Rossii [Trends in the development of autonomous intelligent transport systems in Russia]. Transport RF. 2016; 5 (66): 26-28. (in Russian)
24. Zhankaziev, S.B., Vlasov V.M. Nauchnye podhody k formirovaniju gosudarstvennoj strategii razvitija intellektual’nyh transportnyh sistem [Scientific approaches to the formation of a state strategy for the development of intelligent transport systems]. Scientific aspects of the development of transport-telematic systems. 2010. 46-68. (in Russian)
25. Plotnikov A.M. Upravlenie bezopasnost’ju dorozhnogo dvizhenija na odnourovnevyh perekrestkah [Road safety management at single-level crossroads]. St. Petersburg, LLC “Expert solutions”, 2014. 404 p.
26. Evtiukov S. A., Kurakina E. V., Evtiukov S. S. Smart Transport in road transport infrastructure. Materials Science and Engineering. 2020; 832. DOI: org/10.1088/1757-899X/832/1/012094. (in Russian)
27. Melnikov I.I., Demidenkov K.A., Emelyanov I.A., Evseenko I.A. Detektor dvizhenija na osnove impul’snyh nejronnyh setej [Motion detector based on impulse neural networks]. Information technologies. 2013; 7: 57-60. (in Russian)
28. Amosov O.S., Ivanov Yu.S. Kurakina E.V., Evtyukov S.S. Modificirovannyj algoritm lokalizacii nomernyh znakov transportnyh sredstv na osnove metoda Violy-Dzhonsa [Road safety audit as an element of systemic management of activities to prevent road accidents]. Materials of the IV International Scientific and Practical Conference “Information Technologies and Innovations in Transport (Oryol State University named after I.S. Turgenev), 2019. 126-132. (in Russian)
Review
For citations:
Mikhailov A.Yu., Popova E.L. Analysis of mathematical models for calculating following intervals in main flows the prevailing road conditions in the Russian Federation. The Russian Automobile and Highway Industry Journal. 2020;17(6):714-725. (In Russ.) https://doi.org/10.26518/2071-7296-2020-17-6-714-725