Preview

The Russian Automobile and Highway Industry Journal

Advanced search

HARDENING CONCRETE IN STRUCTURES: CHOICE OF THE CONSTRUCTION METHOD BASED ON RESULTS OF THE TEMPERATURE REGIME MODELING IN SPECIAL CONDITIONS

https://doi.org/10.26518/2071-7296-2019-4-486-503

Abstract

Introduction. The paper discusses the use of different methods of the hardening concrete’s temperature regime, depending on the boundary conditions specified in the design and construction of the object. Such conditions include the temperature regime of concrete holding, the turnover rate of the formwork and the construction time of the facility, as well as other factors. The aim of the research is a compilation of the various methods of investigation of the temperature regime of hardening concrete, aimed at providing the required timing of the formwork and technological equipment turnover to ensuring the consumer properties of the structures. The scientific novelty of the research lies in the updating and testing of methods for regulating the hardening concrete’s heating, ensuring the formation of the required consumer structures’ properties not previously used in transport and civil construction and based on preliminary modeling of thermal processes occurring in the hardening concrete through the calculation software. The authors on the example of several large objects’ construction consider the most common situations associated with the selection of construction technology in difficult natural conditions by taking into account the required consumer properties: concreting of large-mass structures in a limited time in the warm season and low-mass structures in winter concreting. The research is relevant in view of the large-scale construction in our country as well as of the facilities’ reconstruction.

Materials and methods. The authors carried out the research with the use of modern settlementmeasuring and analytical systems taking into account the change in the thermal stress state of hardening concrete as a function of the temperature change of the concrete mix over time. The use of the modern computational and analytical complex in the physical modeling of the thermo physical processes of hardening concrete made it possible to obtain results as accurately as possible and comparable with observational data obtained during the construction process.

Results. The results allowed authors to project the objects’ concreting of erected in various predetermined conditions while observing the required terms of formwork turnover and ensuring the necessary consumer properties.

Discussion and conclusions. The authors propose measures, the implementation of which makes it possible to build complex construction projects in a short time in special climatic conditions. The paper is useful for engineering and technical personnel and for professionals involved in the study of thermal processes of hardening concrete.

About the Authors

I. S. Pulyaev
National Research Moscow State University of Civil Engineering
Russian Federation

Ivan S. Pulyaev – Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Binders and Concretes’ 

129337, Moscow, 26, Yaroslavskoe Hw



S. M. Pulyaev
National Research Moscow State University of Civil Engineering
Russian Federation

Sergey M. Pulyaev – Candidate of Technical Sciences, Associate Professor, Associate Professor of the Construction Materials and Engineering Department

129337, Moscow, 26, Yaroslavskoe Hw



References

1. Tarasov A.M., Bobrov F.YU., Pryakhin D.V. Primeneniye fizicheskogo modelirovaniya pri stroitel’stve mostov i drugikh sooruzheniy [Application of physical modeling in the construction of bridges and other structures]. Nauchno-tekhnicheskiy zhurnal Vestnik mostostroyeniya. 2007; 1: 21–26 (in Russian).

2. Pryakhin D.V. Issledovaniye raboty vantovogo prolotnogo stroyeniya mosta metodami fizicheskogo modelirovaniya [Investigation of the cable-stayed bridge structure using physical modeling methods]. Nauchno-tekhnicheskiy zhurnal «Transportnoye stroitel’stvo». 2009; 10: 11–13 (in Russian).

3. Solov’yanchik A.R., Shifrin S.A., Il’in A.A., Sokolov S.B. Vybor tekhnologicheskikh parametrov proizvodstva betonnykh rabot pri vozvedenii massivnykh rostverkov i opor arochnogo pilona vantovogo mosta cherez reku Moskvu [Selection of technological parameters for the production of concrete works during the erection of massive grillage and support of the arch bridge of the cable bridge over the Moscow river]. Nauchnyye trudy OAO TSNIIS Issledovaniye transportnykh sooruzheniy. 2006; 230: 24–30 (in Russian).

4. Solov’yanchik A.R., Korotin V.N., Shifrin S.A., Veytsman S.G. Opyt snizheniya treshchinoobrazovaniya v betone ot temperaturnykh vozdeystviy pri sooruzhenii Gagarinskogo tonnelya [Experience in reducing cracking in concrete from thermal effects during the construction of the Gagarinsky tunnel]. Nauchno-tekhnicheskiy zhurnal Vestnik mostostroyeniya. 2002; 3–4: 53–59 (in Russian).

5. Velichko V.P. Metodika ispol’zovaniya gidravlicheskih analogij V.S. Luk’yanova pri razrabotke algoritma i reshenii na EVM zadach transportnogo stroitel’stva [Method of using hydraulic analogies of V. S. Lukyanov in the development of the algorithm and the solution of computer problems of transport construction]. Sbornik nauchnyh trudov TsNIIS. 1987; 100: 15–22 (in Russian).

6. Ginzburg A.V. Obespecheniye vysokogo kachestva i effektivnosti rabot pri vozvedenii tonneley iz monolitnogo betona [Ensuring the high quality and efficiency of work in the construction of tunnels from monolithic concrete]. Vestnik MGSU. 2014; 1: 98–110 (in Russian).

7. Solov’yanchik A.R., Pulyayev I.S. Preduprezhdeniye treshchinoobrazovaniya v betone pri vozvedenii nizhnikh chastey pilonov vantovogo mosta cherez reku Oku na obkhode goroda Muroma [Prevention of cracking in concrete when erecting the lower parts of the pylons of the cable-stayed bridge across the Oka river on the Murom bypass]. Vestnik MGSU. 2008; 1: 285–295 (in Russian).

8. Yevlanov S.F. Tekhnologicheskiye treshchiny na poverkhnosti monolitnykh prolotnykh stroyeniy [Technological cracks on the surface of monolithic building structures]. Nauchnyye trudy OAO TSNIIS Problemy normirovaniya i issledovaniya potrebitel’skikh svoystv mostov. 2002; 208: 27–36 (in Russian).

9. Xu, G., He, C., Lu, D., Wang, S. The influence of longitudinal crack on mechanical behavior of shield tunnel lining in soft-hard composite strata. Thin-Walled Structures. 2019; 144: 23 p.

10. Concu, G., Trulli, N. Concrete defects sizing by means of ultrasonic velocity maps. Buildings. 2018: 8(12): 19 p.

11. Passek V.V., Zakovenko V.V., Antonov Ye.A., Yefremov A.N. Primeneniye iskusstvennogo okhlazhdeniya v protsesse upravleniya temperaturnym rezhimom vozvodimykh zhelezobetonnykh arok [Application of artificial cooling in the process of controlling the temperature regime of erected reinforced concrete arches]. Nauchnyye trudy OAO TSNIIS Ot gidravlicheskogo integratora k sovremennym komp’yuteram, 2002; 213: 73–75 (in Russian).

12. Vasil’yev A.I., Veytsman S.G. Sovremennyye tendentsii i problemy otechestvennogo mostostroyeniya [Modern trends and problems of the domestic bridge construction]. Vestnik mostostroyeniya. 2015; 1: 2–17 (in Russian).

13. Solov’yanchik A.R., Shifrin S.A., Korotin V.N., Veytsman S.G. Realizatsiya kontseptsii «kachestvo» pri sooruzhenii Gagarinskogo tonnelya v g. Moskve [Realization of the “quality” concept in the construction of the Gagarinsky tunnel in Moscow]. Nauchnyye trudy OAO TSNIIS Tekhnologii i kachestvo vozvodimykh konstruktsiy iz monolitnogo betona. 2003; 217: 206–212 (in Russian).

14. Passek V.V., Solov’yanchik A.R. Metodika issledovaniy temperaturnogo rezhima balok prolotnykh stroyeniy mostov v protsesse teplovlazhnostnoy obrabotki [Technique for studying the temperature conditions of the beams of bridge building structures in the process of heat and moisture treatment]. Sbornik nauchnykh trudov TSNIIS Temperaturnyy rezhim i voprosy povysheniya ustoychivosti i dolgovechnosti transportnykh sooruzheniy na BAM. Mscow: TSNIIS, 1980: 97–103 (in Russian).

15. Zvorykin, A., Mahdi, M., Popov, R., Barati Far, K., Pioro, I. Heat transfer to supercritical water (liquid-like state) flowing in a short vertical bare tube with upward flow. International Conference on Nuclear Engineering, Proceedings, ICONE 9. 2017. 14 p.

16. Solovyanchik A.R., Krylov B.A., Malinsky E.N. Inherent thermal stress distributions in concrete structures and method for their control. Thermal Cracking in Concrete at Early Ages. Proceedings of the International RILEM Symposium. Munich, 1994. 5 p.

17. Luk’yanov V.S., Solov’yanchik A.R. Fizicheskiye osnovy prognozirovaniya sobstvennogo termonapryazhonnogo sostoyaniya betonnykh i zhelezobetonnykh konstruktsiy [Physical basis for predicting the intrinsic thermo-stress state of concrete and reinforced concrete structures]. Sbornik nauchnykh trudov TSNIIS. 1972; 73: 36–42 (in Russian).

18. Luk’yanov V.S., Denisov I.I. Raschot termouprugikh deformatsiy massivnykh betonnykh opor mostov dlya razrabotki mer po povysheniyu ikh treshchinostoykosti [Calculation of thermoelastic deformations of massive concrete bridge supports to develop measures to increase their fracture toughness]. Sbornik nauchnykh trudov TSNIIS. 1970; 36: 4–43 (in Russian).

19. Solov’yanchik A.R., Velichko V.P., Zorina V.A. Razrabotka novoj metodiki issledovaniya temperaturnogo rezhima, prochnosti tverdeyushchego betona i termonapryazhyonnogo sostoyaniya konstrukcij transportnyh sooruzhenij s pomoshch’yu PK [Development of a new methodology for the temperature regime, the strength of hardening concrete and the thermal stress state of structures of transport structures with the PC]. Sbornik nauchnyh trudov TsNIIS. 1992; 112: 75–77 (in Russian).

20. Solov’yanchik A.R., Velichko V.P., Zorina V.A. Raschyot teplovogo i termonapryazhyonnogo sostoyaniya betonnyh i zhelezobetonnyh konstrukcij s izmenyonnoj geometriej v processe ih izgotovleniya. (ZA200) [Calculation of thermal and thermal stress state of concrete and reinforced concrete structures with changed geometry during their manufacture. (ZA200)]. Sbornik nauchnyh trudov TsNIIS. 1989; 108: 10–15 (in Russian).

21. Pulyaev S., Pulyaev I., Korovyakov V., Sitkin, A. Research of hydration heat of Portland cement used in bridge construction of Kerch Strait. MATEC Web of Conferences. 2018; 251: 7 p.

22. Pulyaev, I., Pulyaev, S., Bazhenov, Y., Fetisova, A., Shcherbeneva, O. Effect of thermal induced stress of concrete on performance characteristics of constructions. 22nd International Scientific Conference on Construction the Formation of Living Environment, FORM 2019. 2019; 97: 10 p.

23. Kollegger, J., Kromoser, B., Suza, D. Erection of bridges and shells without formwork-challenges for the computational modelling. Computational Modelling of Concrete Structures, EURO-C 2018. 2018: 43–54.

24. Pulyayev I.S., Dudayeva A.N. Issledovaniye temperaturnogo rezhima tverdeyushchego betona verkhnikh yarusov verkhney chasti pilonov pri stroitel’stve mosta cherez r. Oku na obkhode g. Muroma [Investigation of the temperature regime of hardening concrete of the upper layers of the upper part of the pylons during the construction of the bridge over the Oka River on the Murom bypass]. Nauchnyye trudy OAO TSNIIS Ispytaniya i raschoty konstruktsiy transportnykh sooruzheniy. 2009; 251: 45–52 (in Russian).

25. Balyuchik E.A., Velichko V.P., Chernyy K.D. Izgotovleniye blokov oblitsovki v zimniy period stroitel’stva mosta cherez reku Angaru [Manufacturing of cladding units during the winter construction of a bridge across the Angara River]. Transportnoye stroitel’stvo. 2012; 10: 4–7 (in Russian).

26. Sokolov S.B. Vliyaniye kolebaniy temperatury vozdukha v teplyakakh na temperaturu tverdeyushchego betona pri vozvedenii monolitnykh plitno-rebristykh prolotnykh stroyeniy v kholodnyy period goda [Influence of air temperature fluctuations in hotbeds on the temperature of hardening concrete during the erection of monolithic slab-ribbed spans during the cold period of the year]. Nauchnyye trudy OAO TSNIIS Ot gidravlicheskogo integratora k sovremennym komp’yuteram. 2002; 213: 167–172 (in Russian).

27. Krasnovskiy B.M. Inzhenerno-fizicheskiye osnovy metodov zimnego betonirovaniya [Engineering and physical foundations of winter concreting methods]. Moscow, GASIS, 2004. 470 p.

28. Solov’yanchik A.R., Shifrin S.A., Korotin V.N., Veytsman S.A. Opyt ispol’zovaniya nepolnogo obzhatiya betona dlya preduprezhdeniya poyavleniya treshchin v konstruktivnykh elementakh transportnykh sooruzheniy [Experience in the use of incomplete compression of concrete to prevent the appearance of cracks in structural elements of transport structures]. Nauchnyye Trudy OAO TSNIIS Tekhnologiya i kachestvo vozvodimykh konstruktsiy iz monolitnogo betona. 2003; 217: 200–205 (in Russian)

29. Velichko V.P., Chernyy K.D. Uchet napryazhenno-deformirovannogo sostoyaniya v sborno-monolitnykh oporakh mostov na stadii ikh sooruzheniya [Account of the stress-strain state in the team-monolithic bridge supports at the stage of their construction]. Transportnoye stroitel’stvo. 2013; 2: 11–13 (in Russian).

30. Kosmin V.V., Mozalev S.V. Problemy issledovaniy, proyektirovaniya i stroitel’stva mostov bol’shikh prolotov [Problems of research, design and construction of large span bridges]. Vestnik mostostroyeniya. 2014; 1: 19–24 (in Russian).

31. Solov’yanchik A.R., S.M. Pulyayev, I.S. Pulyayev. Issledovaniye teplovydeleniya tsementov, ispol’zuyemykh pri stroitel’stve mostovogo perekhoda cherez Kerchenskiy proliv [Investigation of the heat release of cements used in the construction of a bridge across the Kerch Strait]. Vestnik SibADI. 2018; 2: 283–293 (in Russian).

32. Pulyayev I.S., Pulyayev S.M. K voprosu o maksimal’noy temperature osnovaniya, pri kotoroy dopuskayetsya ukladka betonnoy smesi pri vozvedenii transportnykh sooruzheniy [To the question of the maximum temperature of the substrate, at which it is allowed to lay a concrete mixture in the construction of transport facilities]. Vestnik MGSU. 2011; 2: 295–304 (in Russian).

33. Balyuchik E.A., Chernyy K.D. Povysheniye treshchinostoykosti opor mostov iz monolitnogo betona konstruktivnymi metodami [Increasing the crack resistance of bridge supports made of solid concrete with constructive methods]. Sbornik nauchnykh trudov TSNIIS. 2010; 257: 49–57 (in Russian).


Review

For citations:


Pulyaev I.S., Pulyaev S.M. HARDENING CONCRETE IN STRUCTURES: CHOICE OF THE CONSTRUCTION METHOD BASED ON RESULTS OF THE TEMPERATURE REGIME MODELING IN SPECIAL CONDITIONS. The Russian Automobile and Highway Industry Journal. 2019;16(4):486-503. (In Russ.) https://doi.org/10.26518/2071-7296-2019-4-486-503

Views: 751


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-7296 (Print)
ISSN 2658-5626 (Online)