RESULTS OF EXPERIMENTAL RESEARCH OF THE REINFORCED CONCRETE SHELL-SLAB
https://doi.org/10.26518/2071-7296-2019-3-378-392
Abstract
Introducton. The paper demonstrates the results of experimental research of the reinforced concrete shell-slab under the action of vertical uniformly distributed load. The authors also present the comparison of such research results with the results of stress-strain state evaluation performed in the “Lira” software package.
Materials and methods. The authors tested the reinforced concrete model representing physically similar copy with the 1:5 scale coefficients by general size, and by separate details. The load was applied in 10–15% doze of the theoretical bearing capacity of the plate.
Results. The authors calculated the experimental transverse stress σх,3,exp, which was in full-scale construction and in the 3 central sphere. The authors also made the comparison of such transverse stress with theoretical transverse stresses σх,3,teor and the comparison was performed in the “Lira” program complex. The diagrams of the above stresses were well matched by outlines and values.
Discussion and conclusions. As a result, the experimental (σx, 3,exp.) and theoretical (σx,3,theor.) stresses are compressive near the shell-slab center. Its maximum stress values (σx, 3, exp) reach x/b=0,5 at a point with a relative coordinate, and the stress (σx,3,theor.) – x/b ≈ 0,45.
The zero voltage values σx,3,exp. reach a quarter of the shelf width, theoretical stress –with x/b ≈ 0,3 mm ratio.
Maximum values of experimental and theoretical tensile stresses σx, 3 reach x/b ≈ 0,15 ratio. Therefore, the values are close to each other, and do not exceed the standard concrete tensile resistance Rbt, ser.
The practical significance of the study is to obtain experimental evidence of the abandoning possibility of the horizontal transverse reinforcement of the shelf, which would reduce the complexity and cost of the investigated structures production.
The prospects conclude in:
research of the shell-slab operation at the stage of ultimate equilibrium;
research of the shell-slab crack resistance and stiffness at all stages of its operation;
research of the shell-slab operation taking into account the fixation in the transverse direction of its longitudinal contour edges along entire length.
About the Authors
A. V. SelivanoRussian Federation
Anton V. Selivanov – Senior Lecturer, Building Structures Department
F. F. Reger
Russian Federation
Fedor F. Reger – Candidate of Agricultural Sciences, Associate Professor, Building Structures Department
References
1. Borovskih A.V. Issledovanie napryazhennodeformirovannogo sostoyaniya zhelezobetonnyh plit-obolochek [Study of the stress-strain state of reinforced concrete slabs-shells] // Obzornoanaliticheskij i nauchno – tekhnicheskij zhurnal Stroitel’naya mekhanika inzhenernyh konstrukcij i sooruzhenij, Moscow, 2008. рр.82–86 (in Russian).
2. Borovskih A.V. K voprosu o proektirovanii zhelezobetonnyh perekrytij zdanij [To the question of design of reinforced concrete floors of buildings]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka, 2005; 12(83): 67–70 (in Russian).
3. John F. Abel. The future of spatial structures // Fifty Years of Progress for Shell and Spatial Structures. Brentwood. UK : Multi Science Publishing Co Ltd., 2011. рp. 485–490.
4. Baranova T.I., Sil’vanovich T.G., Bormotov A.N., Selivanov M.YU. Realizaciya konstrukcionno-tekhnologicheskih osobennostej zhelezobetona pri razrabotke novyh tipov panelej perekrytij [Implementation of structural and technological features of reinforced concrete in the development of new types of floor panels]. Izvestiya vuzov. Stroitel’stvo, 1997; 4: 7–9 (in Russian).
5. Kopsha S.P., Zaikin V.A. Tekhnologiya bezopalubochnogo formovaniya – klyuch k modernizacii promyshlennosti i snizheniyu sebestoimosti zhil’ya [Technology of formwork free molding is the key to the modernization of the industry and reduce the cost of housing]. Tekhnologii betonov, 2013; 11: 29–33 (in Russian).
6. Baranova T.I., Sil’vanovich T.G., Viktorov V.G., Bormotov A.N. Pustotnaya panel’ pokrytij proizvodstvennyh zdanij [Hollow panel coatings of industrial buildings]. Izvestiya vuzov. Stroitel’stvo, 1995; 11: 3–6 (in Russian).
7. Lyudkovskij A.M., Sokolov B.S. Opyt proektirovaniya i ispytanij usilennyh uzlov opiraniya monolitnyh zhelezobetonnyh perekrytij na kolonny [Experience in design and testing of reinforced support units of monolithic reinforced concrete slabs in columns]. Vestnik MGSU, 2018; Vol. 13; 1 (112): 33–43 (in Russian).
8. Model Code for Concrete Structures 2010. Berlin: Ernst & Sohn, 2013. 402 p.
9. Koyankin A.A., Topakova O.A. Eksperimental’nye issledovaniya sbornomonolitnogo perekrytiya s prednapryagaemoj armaturoj [Experimental studies of precastmonolithic slab with prestressed reinforcement]. Vestnik MGSU, 2016; 3: 19–25 (in Russian).
10. Komlev A.A., Makeev S.A., Krasnoshchekov YU.V. Eksperimental’nye issledovaniya monolitnyh i sborno-monolitnyh perekrytij podzemnyh perekhodov s nizhnej svodchatoj poverhnost’yu [Experimental studies of monolithic and precast-monolithic overlappings of underground passages with lower vaulted surface]. Vestnik SibADI, 2017; 6 (58): 84–91 (in Russian).
11. Komlev A.A., Makeev S.A. Eksperimental’nye issledovaniya raboty profilirovannogo nastila arochnoj formy pod montazhnymi nagruzkami v perekrytiyah nizhnej svodchatoj poverhnost’yu podzemnyh perekhodov [Experimental studies of the work of profiled arched flooring under installation loads in the floors of the lower vaulted surface of underground passages]. Vestnik SibADI, 2017; 4–5 (56-57: 92–101 (in Russian).
12. Zamaliev F.S., Sagitov R.A., Hajrutdinov SH.N. Ispytanie fragmenta stalezhelezobetonnogo perekrytiya na staticheskie nagruzki [Test fragment of steel-concrete composite slab on the static load]. Izvestiya KGASU, 2010; 1: 102–105 (in Russian).
13. Fardiev R.F., Ashrapov A.H., Mustafin A.I. Issledovanie nesushchej sposobnosti pustotnyh plit perekrytiya pri snizhennoj velichine opiraniya na rigeli [Study of the bearing capacity of hollow slabs with a reduced value of support on the crossbars]. Izvestiya KGASU, 2014; 4(30): 172– 177 (in Russian).
14. Gizdatullin A.R., Husainov R.R., Hozin V.G., Krasinnikova N.M. Prochnost’ i deformativnost’ betonnoj konstrukcii, armirovannoj polimerkompozitnymi sterzhnyami [Strength and deformability of a concrete structure reinforced with polymer composite rods]. Inzhenernostroitel’nyj zhurnal, 2016; 2(62): 32–41 (in Russian).
15. Semchenkov A.S., Demidov A.R., Sokolov B.S. Ispytanie fragmentov Plita – rigel’ sbornomonolitnogo perekrytiya karkasa «RADIUSS» [Test of the fragments of Stove – bolt precastmonolithic ceiling of the frame «RADIUSS» Beton i zhelezobeton, 2008; 5: 2–4 (in Russian).
16. Karyakin A.A., Sonin S.A., Popp P.V., Aliluev M.V. Ispytaniya naturnogo fragmenta sborno-monolitnogo karkasa sistemy «ARKOS» s ploskimi perekrytiyami [Tests of the fullscale fragment of the precast-monolithic frame of the «ARKOS» system with flat overlaps]. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Ser. «Stroitel’stvo i arhitektura», 2009; 9: 16–20 (in Russian).
Review
For citations:
Selivano A.V., Reger F.F. RESULTS OF EXPERIMENTAL RESEARCH OF THE REINFORCED CONCRETE SHELL-SLAB. The Russian Automobile and Highway Industry Journal. 2019;16(3):378-392. (In Russ.) https://doi.org/10.26518/2071-7296-2019-3-378-392