CRACK STRENGTH OF HOLLOW CORE SLABS: EXPERIMENTAL RESEARCH
https://doi.org/10.26518/2071-7296-2019-3-366-377
Abstract
Introduction. The paper presents the results of research that allow assessing the degree of influence of pre-organized cracks on the character crack formation and on the process of the hollow-core slabs’ deformation under short-term load action.
Materials and methods. The hollow-core slabs are made without prestressing – one by traditional technology, the second with pre-organized cracks in the manufacturing process. Physical experiment performed on fall-scale structure of hollow-core slabs of П66.10-81500СП. The authors conducted the tests to the calculated breaking load. Moreover, the authors presented the contrastive analysis of character crack formation and of the hollow-core slabs’ deformation of П66.10-8А500СП traditional manufacturing and with pre-organized cracks.
Results. As a result, the authors confirmed the earlier hypotheses about the greater rigidity of plates with pre-organized cracks in comparison with the plates where the cracks arose stochastically and under operational load. The installation of organized cracks did not reduce the bearing capacity, thus, reduced the deformability. Therefore, the width of the crack became smaller and the deflections became less.
Discussion and conclusions. In the structures of long length, which are rejected by the second limit group, the organization of cracks at the manufacturing stage allows not putting additional reinforcement to reduce the width and deflection of the crack.
About the Authors
V. M. MitasovRussian Federation
Valeriy M. Mitasov – Doctor of Technical Sciences, Professor of the Department of Reinforced Concrete Structures
N. V. Statsenko
Russian Federation
Natalya V. Statsenko – Graduate Student, Department of Reinforced Concrete Structures
F. K. Sametov
Russian Federation
Farkhad K. Sametov – Graduate Student, Department of Reinforced Concrete Structures
A. M. Kurbonov
Russian Federation
Akhmadzhon M. Kurbonov – Graduate Student, Department of Reinforced Concrete Structures
References
1. Gvozdev A.A. Rabota zhelezobetona s treshhinami pri ploskom naprjazhennom sostojanii [Reinforced concrete with cracks in the plane stress state]. Stroitel’naja mehanika i raschet sooruzhenij. 1965; 2: 20–23 (in Russian).
2. Nemirovskij Ja. M. Issledovanie naprjazhenno-deformirovannogo sostojanija zhelezobetonnyh jelementov s uchjotom raboty rastjanutogo betona nad treshhinoj i peresmotr na jetoj osnove teorii raschjota deformacij i raskrytija treshhin. [Investigation of the stress-strain state of reinforced concrete elements, taking into account the work of stretched concrete over a crack, and revising, on this basis, the theory of deformation calculation and crack opening]. Sbornik nauchnyh statej NIIZhB «Prochnost’ i zhjostkost’ zhelezobetonnyh konstrukcij». 1968: 47–54 (in Russian).
3. Mitasov V.M. Osnovnyie polozheniya teorii soprotivleniya zhelezobetona: monografiya [Fundamental theses of reinforced concrete resistance theory: a monograph]. Novosibirsk, 2010: 158 p. (in Russian).
4. Darwin D., Dolan C. W., Nilson A. H. Design of Concrete Structures. New York: 15th edition McGraw-Hill, 2016. 786 p.
5. Radajkin O.V. K sovershenstvovaniju metodiki raschjota zhjostkosti izgibaemyh zhelezobetonnyh jelementov iz obychnogo zhelezobetona [Improvement of the methodology for calculating the stiffness of flexible concrete elements from ordinary reinforced concrete]. Izvestija KazGASU. 2012; no 1(19): 59–66 (in Russian).
6. Yuan J., O’Reilly M., Matamoros A., Darwin D. Effect of Simulated Cracks on Lap Splice Strength of Reinforcing Bars. SL Report 12–2. University of Kansas Center for Research. Lawrence. Kansas, 2012: 243p.
7. Yuan J., O’Reilly M., Matamoros A., Darwin D. Effect of Preexisting Cracks on Lap Splice Strength of Reinforcing Bars. ACI Structural Journal. 2016; vol. 113, no. 4: 801–812.
8. Sprygin G.M., Reshetar’ Ju.G. Deformativnost’ izgibaemyh jelementov pri chastichnom otsutstvii sceplenija armatury s betonom [Deformability of flexural elements with partial absence clutch of reinforcement to concrete]. Beton i zhelezobeton. 1983; 4: 12–14 (in Russian).
9. Carino N.J., Clifton J.R. Prediction of Cracking in Reinforced Concrete Structures. Gaithersburg: NISTIR 5634, NIST BFRL, 1995: 50 p.
10. Vasil’ev P.I., Peresypkin E.N. Ob uslovijah obrazovanija prodol’nyh treshhin v izgibaemyh zhelezobetonnyh jelementah [On the conditions for the formation of longitudinal cracks in bending reinforced concrete elements]. Izv. vuzov. Ser. Stroitel’stvo i arhitektura. 1983; 9: 29–33 (in Russian).
11. Griffith A.A. The phenomenon of rupture and flow in solids. Philos. Trans. Roy. Soc., London, 1920, Ser. A., vol. 221: 163–198.
12. Griffith A. A. The theory of rupture. Proc. First Internat. Congress Appl. Mech. Delft, 1924: 55–63.
13. Mitasov V. M. Nekotorye puti dal’nejshego razvitija teorii soprotivlenija zhelezobetona [Some further development ways of the resistance theory of reinforced concrete]. Izvestija vuzov. Stroitel’stvo i arhitektura. 1990; 10: 3–9 (in Russian).
14. Marder M. Shock-ware theory for rupture of Rubber. Physical Rewiew Letters. 2005; 94, Ser. 048001.
15. Guodzen T.M., Jagla E.A. Supersonic Crack Propagation in a class of Lattice Models of Mode III Brittle Fracture. Physical Rewiew Letters. 2005; 95, Ser. 224302.
16. Mitasov V.M., Statsenko N.V. Dinamicheskij aspekt obrazovaniya stoxasticheskoj treshhiny` v betonny`x i zhelezobetonny`x konstrukciyax [Dynamic aspect of the stochastic crack formation in concrete and reinforced concrete structure]. Izvestiya vuzov. Stroitel`stvo. 2016; 8: 5–11(in Russian).
17. Mixajlova N.S. E`ksperimental`ny`e issledovaniya zhelezobetonny`x balok bez treshhin i s zaranee namechennoj treshhinoj [Experimental investigation of reinforced concrete beams without cracks and with previously intended crack]. Izvestie vuzov. Stroitel`stvo. 2007; 4: 117–120 (in Russian).
18. Logunova M.A., Peshkov A.S. E`ksperimental`ny`e issledovaniya betonny`x balok bez organizovanny`x treshhin i s zaranee organizovanny`mi treshhinami [Experimental research of concrete beams without cracks and with specified cracks]. Izvestie vuzov. Stroitel`stvo. 2011; 1: 116–120 (in Russian).
19. Mitasov V.M., Logunova M.A., Shatoxina M.V. Zhelezobetonny`e balki s organizovanny`mi treshhinami pod vozdejstviem dlitel`noj nagruzki [Reinforced concrete beams with specified cracks under the long-term load]. Izvestie vuzov. Stroitel`stvo. 2013; 10: 5–10 (in Russian).
20. Mitasov V.M., Statsenko N.V. Control of stress-strain state in double-span reinforced concrete beams. MATEC Web of Conference, 143, 01007. 2018.
21. Adishchev V.V., Root V.V. Opredelenie parametrov napryazhenno-deformirovannogo sostoyaniya v okrestnosti treshhiny` normal`nogo otry`va v izgibaemy`x zhelezobetonny`x e`lementax [Determination of stress-strain state parameters in the vicinity of the normal separation crack in the bent reinforced concrete elements]. Trudy` NGASU. 2013; 16, no 2 (56): 83‒95 (in Russian).
22. Adishchev V.V., Demeshkin A.G., Shul’ga V.K., Gracheva M.S., Danilov M.N, Mal`czev V.V. Opredelenie zony` ankerovki armiruyushhego e`lementa pri vy`tyagivanii iz matricy [Definition of the anchoring zone of the reinforcing element when pulling from matrix]. Izvestiya vuzov. Stroitel`stvo. 2014;12: 67–79 (in Russian).
Review
For citations:
Mitasov V.M., Statsenko N.V., Sametov F.K., Kurbonov A.M. CRACK STRENGTH OF HOLLOW CORE SLABS: EXPERIMENTAL RESEARCH. The Russian Automobile and Highway Industry Journal. 2019;16(3):366-377. (In Russ.) https://doi.org/10.26518/2071-7296-2019-3-366-377