1. Hua Zhu. Crack formation of steel reinforced concrete structure under stress in construction period. Frattura ed Integrità Strutturale, 36 (2016), pp. 191-200.
2. Käthler et al.Effect of cracks on chlorideinduced corrosion of steel in concrete. Norwegian Public Roads Administration, NPRA reports, Norwegian Public Roads Administration, 5(2017), pp. 1-41.
3. Barris C, Torres LL, Baena M, Pilakoutas K, Guadagnini M. Serviceability limit state of frp rc beams. advances in structural engineering, 15 (2012), pp.653-63.
4. Yang K.H., Singh J., Lee B.Y., Kwon S.J. Simple technique for tracking chloride penetration in concrete based on the crack shape and width under steady-state conditions. Sustainability, 9 (2017), pp.1-282.
5. Wang H.L., Dai J.G., Sun X.Y., Zhang X.L. Characteristics of concrete cracks and their influence on chloride penetration. Constr. Build. Mater. 107(2016), pp. 216-225.
6. Ji Y. Hu Y., Zhang L. Laboratory studies on influence of transverse cracking on chloride-induced corrosion rate in concrete. Cem. Concr. Compos. 69 (2016), pp. 28-37.
7. Oh H. K., Park S. M., Hong S. I. Hot deformation and cracking during compression of 21-4N steel. Advanced Materials Research, 1102 (2015), pp. 12-21.
8. Karpenko N.I., Sokolov B.S., Radaikin O.V. K raschetu prochnosti, zheskosti i treshchinostoykosti vnetsentrenno szhatykh zhelezobetonnykh elementov s primeneniyem nelineynoy deformatsionnoy modeli. [To the calculation of strength, hardness and fracture toughness of eccentrically compressed concrete elements by using nonlinear deformation models], Izvestiya KGASU, 2013, no 4 (26). - pp. 113 - 120.
9. Annette B. R., Jakob F., Lars G. H. Cracking in flexural reinforced concrete members. https://doi.org/1016/j.proeng.2017.02.102. Procedia Engineering 172 (2017), pp. 922 - 929.
10. J. Fisker, L. G. Hagsten, Mechanical model for the shear capacity of R/C beams without stirrups: A proposal based on limit analysis. Engineering Structures 115 (2016), pp.220-231.
11. Mao, L.; Barnett, S.J. Investigation of toughness of ultra-high performance fibre reinforced concrete (UHPFRC) beam under impact loading. Int. J. Impact Eng. 99 (2017), pp. 26-38.
12. Jana D, Katarína T. Deflection of a beam considering the creep. Structural and Physical Aspects of Construction Engineering. 190 (2017), pp. 459 - 463.
13. Yousefieh N., Joshaghani A., Hajibandeh E., Shekarchi M. Influence of fibers on drying shrinkage in restrained concrete. Constr. Build. Mater. 148 (2017), pp. 833-845.
14. Barris C, Torres LL, Turon A, Baena M, Catalan A. An experimental study of the flexural behaviour of glass fiber reinforced polymer reinforced concrete beams and comparison with prediction models. composite structures 91(2009), pp.286-295.
15. Kara IF, Ashour AF. Flexural performance of fiber reinforced polymer reinforced concrete beams. Composite structures 94 (2012), pp.16161625.
16. Miàs C, Torres L, Turon A, Baena M, Barris C. A simplified method to obtain time dependent curvatures and deflections of concrete members reinforced with fiber reinforced polymer bars. Composite structures 92 (2010), pp.1833-38.
17. Goel M. D., Deformation, energy absorption and crushing behavior of single, double and multi-wall foam filled square and circular tubes. Thin-Walled Structures, 90 (2015), pp. 1-11.
18. Naseri F., Jafari F., Mohseni E., Tang W., Feizbakhsh A., Khatibinia M. Experimental observations and SVM-based prediction of properties of polypropylene fibres reinforced self-compacting composites incorporating nano-CuO. Constr. Build. Mater. 143 (2017), pp. 589-598.
19. Mitasov V.M. Opredelenie naprjazhenij armatury zhelezobetonnogo jelementa v sechenie s treshhinoj [Determination of reinforcement stresses of the reinforced concrete element in the section with crack]. Izvestija vuzov,1988, no 3, pp. 116 - 118. (in Russian)
20. Mitasov V.M., Adishchev V.V. Osnovnye predposylki postroenija jenergeticheskoj teorii soprotivlenija zhelezobetona [The basic preconditions for composing the energy theory of the reinforced concrete resistance]. Izvestija vuzov, 2010, no 5, pp. 3 - 9. (in Russian)
21. Mitasov V.M., Adishchev V.V. Osnovnye polozhenija jenergeticheskoj teorii soprotivlenija zhelezobeton [Basic points of the energy theory of the reinforced concrete resistance]. Izvestiya vuzov, 2010, no 6, pp. 3 - 8. (in Russian)
22. Mihajlova N.S., Mitasov V.M. Naprjazhennodeformirovannoe sostojanie zhelezobetonnoj balki s treshhinoj [Stress-strain state of the reinforced concrete beam with the crack]. Materialy Mezhdunarodnyh akademicheskih chtenij, Kursk. 2007. pp.104 - 108. (in Russian)
23. Mihajlova N.S. Jeksperimental’nye issledovanija zhelezobetonnyh balok bez treshhin i zaranee namechennoj treshhiny [Experimental studies of reinforced concrete beams without cracks and with the predetermined crack]. Izvestija vuzov, 2007, no 4, pp. 110 - 113. (in Russian)
24. Mitasov V.M., Logunova M.A., Statsenko N.V. Novyye podkhody k resheniyu zadach deformirovaniya zhelezobetonnykh konstruktsii s treshchinami [New approaches to solve the problems of deformation of reinforced concrete structures with cracks]. Izvestiye vuzov. Investitsii. Stroitel’stvo, Nevdizhimost’ Tom 7, no 1, 2017. pp.77- 84. (in Russian)
25. Mitasov V.M., Chkhum A. Deformirovaniye zhelezobetonnykh balok s formoobrazuyushchimi elementami pri dlitel’nykh nagruzkakh [Deformation of reinforced concrete beams with forming elements under long-term loading]. Sovremennyye naukoyemkiye tekhnologii, 2018, no 3, pp. 79-84. (in Russian)