Preview

The Russian Automobile and Highway Industry Journal

Advanced search

THE CONTROLLER OF FUZZY LOGIC IN THE MANAGEMENT OF TECHNOLOGICAL PROCESSES

https://doi.org/10.26518/2071-7296-2018-1-106-114

Abstract

Introduction. The current stage of progress is associated with the development and implementation of intelligent systems and technologies that provide the formation of clear solutions based on fuzzy rules, fuzzy conclusion and fuzzy control. However, the classical control methods work well only with a completely deterministic control object and deterministic environment, but for fuzzy information systems and highly complex control object, fuzzy control methods are optimal.

Material and methods. Moreover, the process of decision-making by a person in the management of technological processes is modeled and simulated by a fuzzy controller with a base of rules. In recent years, “fuzzy” control has been successfully used to manage and operate a number of systems.

Discussion and results. Therefore, this article is devoted to the consideration of fuzzy logic controller’s application in management systems and existing research methods’ analysis in the field of intelligent control technologies for solving the problems of adaptation of applied models and algorithms to various objects and systems, particularly to the systems for maintaining the microclimate parameters of the building’s life support environment, and also to the basic parameters of increasing the economic efficiency of using the fuzzy logic controller in the control system.

Conclusion. Analyzed control methods based on fuzzy logic are applicable to various technological objects and systems. As a further study, it is planned to consider the issues of fuzzy control of various life support systems of a modern building. 

About the Authors

S. V. Shilkina
National Research Moscow State University of Civil Engineering
Russian Federation

Shilkina Svetlana Vyacheslavovna ) – Ph.D, Assistant Professor 

129337, Moscow, Yaroslavskoye Shosse, 26



E. N. Fokina
National Research Moscow State University of Civil Engineering
Russian Federation

Fokina Ekaterina Nikolaevna – Senior Lecturer 

129337, Moscow, Yaroslavskoye Shosse, 26



References

1. . Orlov A.I. Teorija prinjatija reshenij [Theory of decisionmaking]. Moscow, Mart, 2004. 656 p.

2. Khaikin S. Nejronnye seti [Neural networks]. Moscow, vil’yams, 2008, 1104 p.

3. Rutkowski D., Pilinsky M., Rutkovsky L. Nejronnye seti, geneticheskie algoritmy i nechetkie sistemy [Neural networks, genetic algorithms and fuzzy systems]. Moscow, Hot Line – Telecom, 2013.384 p.

4. Vasiliev V.I. Intellektual’nye sistemy upravlenija [Intelligent control systems]. Theory and practice: textbook. Moscow, Radiotekhnika, 2009. 387 p.

5. Shepherd A.B. Batty W.J., Fuzzy control strategies to provide cost and energy efficient high quality indoor environments in buildings with high occupant densities, Building Service Engineering Research and Technology no. 24, (2003) pp. 35 – 45.

6. Sadovnichy V.A. Superkomp’juternye tehnologii v nauke, obrazovanii i promyshlennosti [Supercomputer technologies in science, education and industry]. Moscow, Moscow state University named after M.V. Lomonosov, 2009. 232 p.

7. Qu Dunyue Cjuj Dun’juje Upravlenie mobil’nym robotom na osnove nechjotkih modelej [Control of mobile robot based on fuzzy models]. Modern problems of science and education. 2007, no. 6, pp. 115 – 121.

8. Aliyev R.A. Upravlenie proizvodstvom pri nechjotkoj ishodnoj informacii [Production Management at fuzzy initial information]. Moscow, Energoatomizdat, 1991.

9. Peshko M.S. Adaptivnaja sistema intellektual’nogo upravlenija parametrami tehnologicheskih processov v pishhevoj promyshlennosti [Adaptive system of intellectual control of technological processes parameters in the food industry]. Omsk scientific Bulletin. 2015, no. 2 (140), pp. 118 – 122.

10. Pesko M.S. Zadacha fazifikacii parametrov processa vegetacii pri postroenii nechetkogo reguljatora [The Task of gazifikatsii parameters of the process of vegetation when building a fuzzy controller]. Omsk scientific Bulletin. 2013, no. 2 (120), pp. 290 – 293.

11. Kolesov K.A. Jenergosberegajushhaja sistema upravlenija na osnove nechetkogo algoritma [Energy efficiency and energy security in industrial enterprises and housing and communal services]. Ufa, an RB, Gil’em, 2010. pp. 119 -123.

12. Leonenko A.V. Nechetkoe modelirovanie v srede MATLAB i fuzzyTECH [Fuzzy modeling in MATLAB and fuzzyTECH]. Saint-Petersburg, BHV-Peterburg, 2003. 736 p.

13. Shtovba S.D. Proektirovanie nechetkih sistem sredstvami MATLAB [Design of fuzzy systems by means of MATLAB]. Moscow, Goryachaya Liniya–Telekom, 2007. 288 p.

14. Shilkina S.V., Trusov A.A. The Effectiveness of implementing automated ventilation system in premises intended for public use [International Conference on Energy and Environmental Protection (ICEEP 2014)]. A Science and Technology Multidisciplinary Journal, http://ciencia-e-tecnica.org/submit.html 2014. Applied Mechanics and Materials, 2014. pp. 351 – 353.

15. Shilkina S.V. Optimizacija tehnicheskogo reshenija po rezul’tatam provedennogo TJeO dlja povyshenija jeffektivnosti proekta [Optimization of technical solutions based on the results of feasibility study to improve the effectiveness of the project]. Bulletin of civil engineers. 2017, no. 6 (65), pp.355 – 363.

16. Apfonskiy A.A. Cifrovye analizatory spektra, signalov i logiki [Digital spectrum analyzers, signal and logic]. Moscow, SOLON-PRESS, 2009. 247 p.

17. Devyatkin Y.L. Trehznachnye semantiki dlja klassicheskoj logiki vyskazyvanij [Three-valued semantics for classical propositional logic]. Moscow, Institute of philosophy, RAN, 2011. 108 p.

18. Lubentsova E.V. Sistemy upravlenija s dinamicheskim vyborom struktury, nechetkoj logikoj i nejrosetevymi modeljami [Control Systems with dynamic choice of structure, fuzzy logic and neural network models]. Stavropol, North Caucasus Federal University. 2014. 248 p.

19. Soldatenkov A.S. Matematicheskoe modelirovanie sistemy upravlenija teplopotrebleniem kompleksa zdanij [Mathematical modeling of the heat management system of the complex of buildings Belgorod]. Belgorod, Belgorod state technological University V.G. Shukhov, ABS ASV, 2015. 176 p.

20. Konopleva I.A. Informacionnye sistemy i tehnologii upravlenija [Information systems and technology management]. Moscow, YUNITI-DANA, 2017. 591 p.


Review

For citations:


Shilkina S.V., Fokina E.N. THE CONTROLLER OF FUZZY LOGIC IN THE MANAGEMENT OF TECHNOLOGICAL PROCESSES. The Russian Automobile and Highway Industry Journal. 2018;15(1):106-114. (In Russ.) https://doi.org/10.26518/2071-7296-2018-1-106-114

Views: 1924


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-7296 (Print)
ISSN 2658-5626 (Online)