MODELS’ SUPERPOSITION AT MODELING THE SATURATION OF CARGO SPATIAL VIBRATIONS
https://doi.org/10.26518/2071-7296-2018-1-29-36
Abstract
Introduction. A solution of the problem of moving the load to a given distance is proposed in the article with the fulfillment of the condition for complete quenching of the uncontrollable pendulum spatial oscillations for the plane pendulum dynamical system with oscillations’ damping describing the load oscillations of the bridge crane on a flexible cable suspension in a separate vertical plane.
Materials and methods. The recalculation principle of the time dependences of the cargo rope deviation from the dependence of the vertical acceleration, speed and movement of the load suspension on the freight trolley in a separate bridge plane or the freight trolley. The kinematic restrictions on the movement of the cargo suspension point in the form of the maximum achievable accelerations, speeds of the bridge and the truck of the crane are taken into account in the research.
Results. The principle hypothesis of the swings’ superposition in the joint cargo movement of two mutually perpendicular vertical planes is confirmed with small deviation angles’ values of the load rope from the vertical position.
Discussion and conclusion. The accuracy of the superposition of the bridge crane pendulum system flat models is evaluated in the process of suppressing the spatial cargo swings. The spatial cargo movement in two mutually perpendicular vertical planes could be simulated with sufficient accuracy for practical purposes using a relatively simple flat mathematical model of the loaded bridge crane pendulum system.
About the Authors
M. S. KorytovRussian Federation
Korytov Mikhail Sergeevich– Doctor of Engineering Science, Associate Professor, Professor of the Department “AKMiT”,
Scopus Author ID 57035238500, Researcher ID B-5667-2015
644080, Omsk, Mira Ave., 5
V. S. Shcherbakov
Russian Federation
Shcherbakov Vitaliy Sergeevich – Doctor of Technical Sciences, Prof., Head. Dep. “APPiE”,
Scopus Author ID 57034922100, Researcher ID N-1716-2017
644080, Omsk, Mira Ave., 5References
1. Shhedrinov A.V., Serikov S.A., Kolmykov V.V. Avtomaticheskaja sistema uspokoenija kolebanij gruza dlja mostovogo krana [Automatic system of calming the load for the bridge crane]. Pribory i sistemy. Upravlenie, kontrol’, diagnostika, 2007, no. 8, pp. 13 – 17.
2. Tolochko O.I., Bazhutin D.V. Sravnitel’nyj analiz metodov gashenija kolebanij gruza, podveshennogo k mehanizmu postupatel’nogo dvizhenija mostovogo krana [Comparative analysis of methods for damping the swings of a load suspended to the mechanism of translational movement of a bridge crane]. Jelektromashinostroenie i jelektrooborudovanie, 2010, no. 75, pp. 22 – 28.
3. Shvedova O.A. Algoritmy podavlenija kolebanij gruzov podjemno-transportnyh mehanizmov s ispol’zovaniem nechetkoj logiki funkcionirovanija [Algorithms for suppressing the swings of cargoes of hoisting-and-transport mechanisms using fuzzy logic of functioning]. Doklady BGUIR, 2014, no.1 (79), pp. 65 – 71.
4. Chernous’ko F.L., Akulenko L.D., Sokolov B.N. Upravlenie kolebanijami [Control of swings]. Moscow, Nauka, 1980, 383 p.
5. Ridout A.J. Anti-swing control of the overhead crane using linear feedback. J. of Electrical and Electronics Engineering, 1989, Vol. 9, no. 1/2, pp. 17 – 26.
6. Omar H.M. Control of gantry and tower cranes : PhD Dissertation. Virginia Polytechnic Institute and State University. Blacksburg, Virginia, 2003, 100 p.
7. Korytov M., Shcherbakov V., Volf E. Impact sigmoidal cargo movement paths on the efficiency of bridge cranes. International Journal of Mechanics and Control, ISSN: 15908844, 2015, Vol. 16, no. 2, pp. 3 – 8.
8. Shcherbakov V. etc. The reduction of errors of bridge crane loads movements by means of optimization of the spatial trajectory size. Applied Mechanics and Materials, 2015, Vol. 811, pp. 99 – 103.
9. Shcherbakov V. etc. Mathematical modeling of process moving cargo by overhead crane. Applied Mechanics and Materials, 2014, Vols. 701 – 702, pp. 715 – 720.
10. Kim Y.S., etc.A new vision-sensorless anti-sway control system for container cranes. Industry Applications Conference, 2003, Vol. 1, pp. 262 – 269.
11. Blackburn D. etc. Command Shaping for Nonlinear Crane Dynamics. Journal of Vibration and Control, 2010, no. 16, p. 477 – 501.
12. Singer N., Singhose W., Seering W. Comparison of filtering methods for reducing residual vibration. European Journal of Control, 1999, no. 5, pp. 208 – 218.
13. Blehman I.I. Vibracionnaja mehanika [Vibration mechanics]. Moscow, Fizmatlit, 1994. 400 p.
14. Shcherbakov V.S., Korytov M.S., Volf E.O. Algoritm kompensacii neupravljaemyh prostranstvennyh kolebanij gruza i povyshenija tochnosti traektorii ego peremeshhenija gruzopodemnym kranom [Algorithm for compensation of uncontrolled spatial swings of cargo and increase of accuracy of the trajectory of its movement by a crane]. Vestnik mashinostroenija, 2015, no. 3, pp. 16 – 18.
15. Butikov E.I. Neobychnoe povedenie majatnika pri sinusoidalnom vneshnem vozdejstvii [Unusual pendulum behavior with sinusoidal external action]. Kompjuternye instrumenty v obrazovanii, 2008, no. 2, pp. 24 – 36.
16. Kilchevskij N.A. Kurs teoreticheskoj mehaniki, T. 1 (kinematika, statika, dinamika tochki) [Course of theoretical mechanics, T. 1 (kinematics, statics, point dynamics)]. Moscow, Nauka, 1972. 456 p.
17. Korytov M.S. Peremeshhenie gruzovoj telezhki mostovogo krana v rezhime podavlenija neupravljaemyh kolebanij gruza [Moving a truck crane bridge crane in the mode of suppressing uncontrolled swings of cargo].Problemy upravlenija, 2017, no. 2, pp. 10 – 16.
18. Mitchell Tom M. Machine Learning. WCB/McGrawHill, 1997, 414 p.
19. Krylov V.I. Priblizhennoe vychislenie integralov [Approximate calculation of integrals]. Moscow, Nauka, 1967, 500 p.
20. Demidovich B.P., Maron I.A., Shuvalova Je.Z. Osnovy vychislitelnoj matematiki [Fundamentals of Computational Mathematics]. Moscow, Nauka, 1967. 368 p.
Review
For citations:
Korytov M.S., Shcherbakov V.S. MODELS’ SUPERPOSITION AT MODELING THE SATURATION OF CARGO SPATIAL VIBRATIONS. The Russian Automobile and Highway Industry Journal. 2018;15(1):29-36. (In Russ.) https://doi.org/10.26518/2071-7296-2018-1-29-36