Application of pso for solving problems of invariant comparison of two-dimensional closed curve
https://doi.org/10.26518/2071-7296-2016-5(51)-145-151
Abstract
About the Authors
Dmitry Borisovich AbramovRussian Federation
Sergey Olegovich Baranov
Russian Federation
Sergey Vladimirovich Leykhter
Russian Federation
References
1. Beg M.F. et al. Computing large deformation metric mappings via geodesic flows of diffeomorphisms // International journal of computer vision. - 2005. - Т. 61. - №. 2. - С. 139-157.
2. Чуканов С.Н. Преобразование Фурье функции трехмерного изображения, инвариантное к действию групп вращения и переноса // Автометрия. - 2008. - Т. 44. - №. 3. - С. 80-87
3. Baker A. Matrix groups: An introduction to Lie group theory. - Springer Science & Business Media, 2012.
4. Arnold V.I., Khesin B.A. Topological methods in hydrodynamics. - Springer Science & Business Media, 1998.
5. Holm D.D. et al. Geometric mechanics and symmetry: from finite to infinite dimensions. - London: Oxford University Press, 2009.
6. Miller M.I., Trouve A., Younes L. Geodesic shooting for computational anatomy // Journal of mathematical imaging and vision. - 2006. - Т. 24. - №. 2. - С. 209-228
7. Bruveris M., Holm D.D. Geometry of image registration: The diffeomorphism group and momentum maps // Geometry, Mechanics, and Dynamics. - Springer New York, 2015. - С. 19-56
8. Kennedy J. et al. Swarm intelligence. - Morgan Kaufmann, 2001.
9. Yang X.S. Nature-inspired optimization algorithms. - Elsevier, 2014.
Review
For citations:
Abramov D.B., Baranov S.O., Leykhter S.V. Application of pso for solving problems of invariant comparison of two-dimensional closed curve. The Russian Automobile and Highway Industry Journal. 2016;(5(51)):145-151. (In Russ.) https://doi.org/10.26518/2071-7296-2016-5(51)-145-151