Statistical analysis of technical characteristics of soil vibratory rollers of different generations
https://doi.org/10.26518/2071-7296-2025-22-5-728-749
EDN: GDECFC
Abstract
Introduction. Soil vibratory rollers are the most prevalent type of specialized machinery for soil compaction, owing to their versatility and high productivity. The effectiveness of soil compaction using vibratory rollers is influenced by a multitude of parameters, categorized into static characteristics (total mass and mass distribution between the traction and compaction modules), dynamic characteristics (vibration frequency and excitation force), and general characteristics (engine power, transport and operating travel speeds, drum diameter and width). Statistical analysis of technical specifications serves as an effective tool for investigating the interrelationships among these parameters and identifying developmental trends, including those observed in soil vibratory rollers across different generations.
Materials and methods. The study analyzes the technical characteristics of soil vibratory rollers of different generations. Statistical processing was carried out using Microsoft Excel software. 432 models of vibratory rollers, including 252 vibratory rollers of 3rd and 4th generation and 180 vibratory rollers of 5th generation, were scrutinized.
Results. Graphs of various technical characteristics of soil vibratory rollers of different generations vs mass of the vibratory drum modules were plotted. Regression equations and corresponding determination coefficients were derived. The parameter “linear relative excitation force” has been proposed to characterize the combined influence of the relative excitation force and the drum width of a soil vibratory roller.
Discussion and conclusion. The study presents the changes of the main technical characteristics of vibratory rollers of different generations produced over the past 20-30 years as well as certain trends in these changes during the transition between generations of soil rollers. The relatively large variation in the technical characteristics responsible for dynamic capabilities of soil vibratory rollers indicates a lack of consensus among manufacturers and researchers regarding the numerical values of these parameters.
About the Authors
I. S. TyuremnovRussian Federation
Tyuremnov Ivan S., Candidate of Technical Science, Associate Professor, Head of the Construction and Road Machines Department
88, Moskovsky Prospekt, Yaroslavl, 150023
D. A. Shorohov
Russian Federation
Shorohov Dmitrii A., Post-graduate student of the Construction and Road Machines Department
88, Moskovsky Prospekt, Yaroslavl, 150023
References
1. Timofeev D.M. Key Factors and Dependencies Determining Optimal Operating Modes of Vibratory Rollers for Sand Compaction. Engineering Bulletin of Don. 2019; 1(52): 138. (in Russ.) http://www.ivdon.ru/uploads/article/pdf/IVD_78_Timofeev_1.pdf_4021ab4e6b.pdf
2. Tyuremnov I.S., Ignat‘ev A.A. Uplotnenie gruntov vibratsionnymi katkami : monografiya. YAroslavl: Izd-vo YAGTU, 2012. 140 p. (in Russ.)
3. Permyakov V.B., Zakharenko A.V., Savel’ev S.V. Obosnovanie vybora parametrov vibratsionnykh katkov. Izvestiya vuzov. Stroitel’stvo. 2003; 2: 100–103. (in Russ.)
4. Timofeev D.M. Otsenka effektivnosti primeneniya gruntouplotnyayushchikh mashin i mekhanizmov. Inzhenernyy vestnik Dona. 2018; № 1(48): 74. (in Russ.) http://www.ivdon.ru/uploads/article/pdf/IVD_133_Timofeev.pdf_8efc46a15c.pdf
5. Adam D. Roller Integrated Continuous Compaction Control (CCC) Technical Contractual Provisions & Recommendations. Des. Constr. Pavements Rail Tracks Geotech. Asp. Process. Mater. / ed. Correia A.G. et al. Taylor & Francis Group, London, UK, 2007: 111–138.
6. Pistrol J. et al. An Advanced ICMV for Vibratory Roller Compaction. Acta Geotechnica. 2024. doi.org/10.1007/s11440-024-02342-8
7. Popov YU.G., Malov G.S., Krasnikov A.S. Modelirovanie i optimizatsiya dvukhamplitudnogo debalansa s podvizhnoy vnutrenney massoy. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie. 2023; 6(759): 30–38. (in Russ.) doi: 10.18698/0536-1044-2023-6-30-38
8. Vibratsionnye ustroystva s asimmetrichnymi kolebaniyami: CHast’ 1 / M. D. Gerasimov, S.N. Glagolev, N.S. Lyubimyy, S.S. Latyshev. – Belgorod : Belgorodskiy gosudarstvennyy tekhnologicheskiy universitet im. V. G. SHukhova, 2023. – 144 p. (in Russ.)
9. Shi M. et al. Effective Compaction Power Index for Real-Time Quality Assessment of Coarse-Grained Geomaterials: Proposal and Comparative Study. Construction and Building Materials. 2022; 321: 126375. https://doi.org/10.1016/j.conbuildmat.2022.126375
10. Fathi A. et al. Assessing Depth of Influence of Intelligent Compaction Rollers by Integrating Laboratory Testing and Field Measurements. Transportation Geotechnics. 2021; 28: 100509. https://doi.org/10.1016/j.trgeo.2020.100509
11. Xu G. et al. The Pioneer of Intelligent Construction-An Overview of the Development of Intelligent Compaction. Journal of Road Engineering. 2022; 2(4): 348–356. https://doi.org/10.1016/j.jreng.2022.12.001
12. Chen C. et al. Intelligent Compaction Quality Evaluation Based on Multi-Domain Analysis and Artificial Neural Network. Construction and Building Materials. 2022; 341: 127583. https://doi.org/10.1016/j.conbuildmat.2022.127583
13. Briaud J.L., Seo J. Intelligent Compaction: Overview and Research Needs. Texas A&M University. 2003: 1–84.
14. Tyuremnov I.S. Obzor sistem nepreryvnogo kontrolya uplotneniya grunta dlya vibratsionnykh katkov. CHast’ 3. Osobennosti funktsionirovaniya i “intellektual’noe uplotnenie”. Vestnik Tikhookeanskogo gosudarstvennogo universiteta. 2016; 2(41): 115–122. (in Russ.) http://pnu.edu.ru/vestnik/pub/articles/2226/
15. «Intellektual‘noe uplotnenie»: derzkiy zamysel ili ob“ektivnaya real‘nost‘? Stroitel‘nye i dorozhnye mashiny. 2007; 8: 8–13. (in Russ.)
16. Tyuremnov I.S., Filatov I.S., Ignat‘ev A.A. Obzor rekomendatsiy proizvoditeley po ispol‘zovaniyu vibratsionnykh katkov dlya uplotneniya grunta. Vestnik Tikhookeanskogo gosudarstvennogo universiteta. 2014; 2(33):155–162. (in Russ.) http://pnu.edu.ru/vestnik/pub/articles/1961/
17. Tyuremnov I.S., Ignat‘ev A.A., Filatov I.S. Statisticheskiy analiz tekhnicheskikh kharakteristik gruntovykh vibratsionnykh katkov. Vestnik Tikhookeanskogo gosudarstvennogo universiteta. 2014; 3(34): 81–88. (in Russ.) https://vestnik.pnu.edu.ru/vestnik/pub/articles/1987/
18. Anderegg R., Kaufmann K. Intelligent Compaction with Vibratory Rollers. Transportation Research. 2004; 1868: 124–134.
19. Adam D., Kopf F. Operational Devices for Compaction Optimization and Quality Control (Continuous Compaction Control & Light Falling Weight Device). Proc. Int. Semin. Geotech. Pavement Railway Design and Construction. Athens, Greece. 2004: 97–106.
20. Tyuremnov I.S., Shorohov D.A. Vibrating roller with compacted soil interaction modelling. The Russian Automobile and Highway Industry Journal. 2024; 21(2): 202-216. (In Russ.) https://doi.org/10.26518/2071-7296-2024-21-2-202-216
21. Tyuremnov I.S. Technical parameters analyses of different types of impact-vibration soil compacting machines. The Russian Automobile and Highway Industry Journal. 2023; 20(6): 706-716. (In Russ.) https://doi.org/10.26518/2071-7296-2023-20-6-706-716
22. Tyuremnov I.S. Investigation into the influence of vibratory roller dynamic characteristics on interaction features of Frame-Drum-Soil system elements. The Russian Automobile and Highway Industry Journal. 2025; 22(3): 396-416. (In Russ.) https://doi.org/10.26518/2071-7296-2025-22-3-396-416
23. Yoo T.-S., Selig E.T. Dynamics of Vibratory-Roller Compaction. Journal of Geotechnical Engineering Division ASCE. 1979; 105(GT10): 1211–1231.
24. Tarasov V.N., Boyarkina I.V., Serebrennikov V.S. Vliyanie massy vertikal’nogo prigruza na amplitudu kolebaniy vibroval’tsa i vibrozashchitu ramy dorozhnogo katka. Stroitel’nye i dorozhnye mashiny. 2019; 9: 30–36. (in Russ.)
25. Shabanova G.I., Savel’ev S.V., Buryy G.G. Matematicheskoe opisanie kolebatel’noy sistemy “vibratsionnyy rabochiy organ - grunt”. Vestnik Sibirskoy gosudarstvennoy avtomobil’no-dorozhnoy akademii. 2013; 3(31):102–107. (in Russ.) https://www.elibrary.ru/download/elibrary_19032661_60709817.pdf
26. Shishkin E.A., Smolyakov A.A. Obosnovanie sposoba regulirovaniya kontaktnogo usiliya vibratsionnogo val’tsa s uplotnyaemym materialom. Sistemy. Metody. Tekhnologii. 2022; 1(53): 36–42. (in Russ.) DOI 10.18324/2077-5415-2022-1-36-42
27. Teramoto S., Ito S., Kobayashi T. Deep Learning-Based Soil Compaction Monitoring: A Proof-ofConcept Study. Journal of Terramechanics. 2024; 111: 65–72. https://doi.org/10.1016/j.jterra.2023.10.001
28. Bratu P., Tonciu O., Nițu M.C. Modeling the Vibratory Compaction Process for Roads. Buildings. 2023; 13(11). https://doi.org/10.3390/buildings13112837
29. Lu Y. et al. Research on Vibratory & Oscillatory Coexistence Nonlinear Dynamics Based on Drum-Subgrade Coupling Model. International Journal of Nonlinear Mechanics. 2023; 157: 104536. https://doi.org/10.1016/j.ijnonlinmec.2023.104536
30. Wersäll C., Nordfelt I., Larsson S. Soil Compaction by Vibratory Roller with Variable Frequency. Géotechnique. ICE Publishing, 2016; 67(3): 272–278. DOI: 10.1680/jgeot.16.P.051
31. Wu K. et al. Discrete Element Modeling of Vibration Compaction Effect of the Vibratory Roller in Roundtrips on Gravels. Journal of Testing and Evaluation. 2021; 49: 20190910. https://doi.org/10.1520/JTE20190910
32. Tyuremnov I.S. Investigation into the influence of vibratory roller dynamic characteristics on interaction features of Frame-Drum-Soil system elements. The Russian Automobile and Highway Industry Journal. 2025;22(3):396-416. (In Russ.) https://doi.org/10.26518/2071-7296-2025-22-3-396-416.
Review
For citations:
Tyuremnov I.S., Shorohov D.A. Statistical analysis of technical characteristics of soil vibratory rollers of different generations. The Russian Automobile and Highway Industry Journal. 2025;22(5):728-749. (In Russ.) https://doi.org/10.26518/2071-7296-2025-22-5-728-749. EDN: GDECFC



































