Transport supply management on regular intercity bus lines
https://doi.org/10.26518/2071-7296-2023-20-5-632-648
EDN: WMBMDI
Abstract
Introduction. Intercity public transport ensures the satisfaction of mobility not only for long-distance passengers, but also for residents of small settlements located on a regular line. There are often no other types of regular public transport between such settlements. The growing demand for intercity bus transportation increases the need for efficient transportation design in order to provide competitive public transport services and minimize the costs of carriers.
Materials and methods. The article presents a mathematical model of transportation planning on an intercity regular bus line passing through settlements with different numbers of inhabitants. The objective function is aimed at forming a transport supply that satisfies potential demand, for which the gravitational method is used to determine. The analysis of the unevenness of passenger flows by months of the year, days of the week and flights shows that on most flights the capacity of the rolling stock is not used efficiently enough.
Results. By comparing the potential number of passengers on flights with the actual one, it is shown that flexible regulation of transport supply taking into account demand will significantly improve the quality and efficiency of public transport services.
Discussion and conclusion. Based on the data for 2022 of the booking system serving the regular bus line, it is shown that with the introduction of flexible regulation of the transport offer, the expected increase in passenger turnover will be about 25%.
About the Authors
A. I. FadeevRussian Federation
Dr of Sci., Professor of the Transport Department
Krasnoyarsk
A. M. Ilyankov
Russian Federation
Postgraduate student of the Transport Department
Krasnoyarsk
References
1. Woldeamanuel M. Evaluating the competitiveness of intercity buses in terms of sustainability indicators. Journal of Public Transportation. 2012; Vol. 15, No. 3: 5.
2. Ortuzar J. D. Modelling transport / J. D. Ortuzar, L. G. Willumsen. John Willey & Sons, 2011. 586 p. URL: DOI:10.1002/9781119993308.
3. Shherbakov L. M. Jeffektivnost’ mezhdugorodnyh avtobusnyh perevozok v uslovijah funkcionirovanija rynka transportnyh uslug [Efficiency of intercity bus transportation in the context of the transport services market]. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta. 2011; 3 (50): 63–65. (in Russ.)
4. Javid R., andE. Sadeghvaziri. Investigating the Relationship Between Access to Intercity Bus Transportation and Equity. Transportation Research Record, 2022, p. 03611981221088218. 5. Group K. Effective Approaches to Meeting Rural Intercity Bus Transportation Needs. Report 79, Transit Cooperative Research Program. Transportation Research Board, National Research Council, Washington, D.C., 2002. 184 p.
5. Nielsen G., Lange T. Network design for public transport success–theory and examples. Norwegian Ministry of Transport and Communications, Oslo, 2008. 30 p.
6. Ryan F., Allard R. F., and Moura F., The Incorporation of Passenger Connectivity and Intermodal Considerations in Intercity Transport Planning, Transport Reviews, 2015, http://dx.doi.org/10.1080/01441647.2015.1059379
7. Korjagin M. E., Chistjakov A. S. Baza dannyh dlja opisanija rynka mezhdugorodnyh passazhirskih pere-vozok [Long Distance Passenger Market Description Database]. Vestnik Sibirskogo gosudarstvennogo universiteta putej soobshhenija. 2021; 1(56): 38–45. DOI 10.52170/1815-9262-2021-56-38. (in Russ.)
8. Makarova E. A., Elizarov S. B., Muktepavel S. V. Avtomatizirovannaja sistema prognozirovanija passazhirskih transportnyh potokov na baze ASU «Jekspress» [Automated system for forecasting passenger traffic flows based on ACS “Ex-press”]. Vestnik nauchno-issledovatel’skogo insti-tuta zheleznodorozhnogo transporta. 2011; 4: 21–27. (in Russ.)
9. Alderighi M., Cento, A., Nijkamp, P., &Rietveld, P. Network competition – the coexistence of hub-andspoke and point-to-point systems. Journal of Air Transport Management. 2005; 11(5): 328–334.doi:10.1016/j.jairtraman.2005.07.006
10. AlderighiM, Feder C, Nijkamp P, UngureanuEI Simple pricing rules in complex air transport systems. Handbook on Entropy, Complexity and Spatial Dynamics: A Rebirth of Theory? Chapter 18. 2021: pp. 304 – 320 doi: 10.4337/9781839100598.00027
11. Merrina A., Sparavigna, A., & Wolf, R. A. The intermodal networks: A survey on intermodalism. World Review of Intermodal Transport Research. 2007; 1(3): 286–299.
12. Ranjbari A., Hickman M.,·Chiu YC. A Mathematical Optimization Model for Solving the Intercity Transit Network Design Problem // CASPT 2018 Extended Abstract. Available at: http://www.caspt.org/wp-content/uploads/2018/10/Papers/CASPT_2018_paper_128.pdf. (accessed: 22.05.2023)
13. Sunhyung Yoo, Jinwoo Brian Lee, and Hoon Han. A reinforcement learning approach for bus network design and frequency setting optimization. Public Transport. 2023: pp 1–32. /doi.org/10.1007/s12469022-00319-y
14. Ibarra-Rojas, O., J., Delgado, R. Giesen, and J.C. Muñoz Planning, Operation, and Control of Bus Transport Systems: A Literature Review. Transportation Research Part B: Methodological. 2015; 77: 38-75. DOI: 10.1016/j.trb.2015.03.002.
15. Jingxu Chen, Zhiyuan Liu, Senlai Zhu, Wei Wang. Design of limited-stop bus service with capacity constraint and stochastic travel time // Transportation Research Part E: Logistics and Transportation Review. 2015; Volume 83: 1-15. doi.org/10.1016/j.tre.2015.08.007
16. Casey H. J. (1955) Applications to traffic engineering of the law of retail gravitation. Traffic Quarterly IX. 1995: 23–35.
17. Erlander S. and Stewart N.F. (1990) The Gravity Model in Transportation Analysis: Theory and Extensions. VSP, Utrecht.
18. Abrahamsson T. Estimation of Origin-Destination Matrices Using Traffic Counts A LiteratureSurvey. Technical report, IIASA, Laxenburg, Austria, 1998. 27 p.
19. Willumsen L. G. Estimation of OD matrix from traffic counts – A review. Working Paper. Inst. Transp. Stud. Univ. Leeds. 1978.
20. Dolja K. V. Formalization for Parameter Calculation of Intercity Passenger Transport Correspondence. Nauka i tehnika. 2017; T. 16, no 5: 437 – 443. DOI: 10.21122/2227-1031-2017-16-5-437-443. (in Russ.)
21. Nurminskij E. A., Pugachev I. N., Shamraj N. B., Sedjukevich V. N. Opredelenie passazhiropotokov v regional’noj transportnoj sisteme na osnove modificirovannyh gravitacionnyh modelej [Determination of passenger traffic in the regional transport system on the basis of modified gravital models]. Nauka i tehnika. 2015; 5. 2015: 39 – 45. (in Russ.)
22. Gorbachev P. F., Krikun V. I. Modelirovanie sprosa na perevozku passazhirov v prigorodnom soobshhenii [Modeling Demand for Commuter Transportation]. VEZhPT. 2013; 3(62):12–15. (in Russ.)
23. Koppelman Franz S. and Hirsh, Moshe. (1984). Intercity Travel Choice Behavior: Theory and Empirical Analysis. Proceedings, Fifth International Conference on Travel Behavior, Institut National de Recherche sur les Transports et leur Securite, Aix-en-Provence, France, 1991. pp. 227-244.
24. Brand, Daniel, et al. (1992). Forecasting High Speed Rail Ridership. Transportation Research Record. 1992; No. 1341:12 – 18.
25. Peers, John B. and Bevilacqua, Michael, Alan M. Voorhees and Associates, Inc. (1976). Structural Travel Demand Models: An intercity Application. Transportation Research Record. No. 569. 124 – 135 p.
26. Lu, M., Zhu, H., Luo, X., & Lei, L. (2015). Intercity travel demand analysis model. Advances in MechanicalEngineering, 6. https://doi.org/10.1155/2014/108180
27. Chistyakov A., Koryagin M. Interurban Travel Mode Choice Model Which Based on Departures Frequency and Passengers’ Preferences. International Scientific Siberian Transport Forum. Springer, Cham, 2021. P. 964 – 973.
Review
For citations:
Fadeev A.I., Ilyankov A.M. Transport supply management on regular intercity bus lines. The Russian Automobile and Highway Industry Journal. 2023;20(5):632-648. (In Russ.) https://doi.org/10.26518/2071-7296-2023-20-5-632-648. EDN: WMBMDI