Mathematical model of controlled vane hydraulic shock absorber
https://doi.org/10.26518/2071-7296-2023-20-5-560-572
EDN: KBOCMW
Abstract
Introduction. Modern technologies, as well as various methods and schemes currently used in technology, have made it possible to automatically control the damping properties of shock absorbers, which increases the energy intensity of the entire suspension system. However, in order to use these solutions in practice, it is necessary to develop mathematical models of these damping elements. Such models serve as a theoretical tool for studying the described processes in order to implement the correct control action. As for such units as controlled (adjustable) vane shock absorbers, the studies carried out earlier on them are clearly not enough to ensure their effective operation in various conditions.
The object of this study is a controlled vane hydraulic shock absorber.
The purpose of this work is to carry out theoretical studies and improve the methodology for calculating controlled (adjustable) bladed hydraulic shock absorbers, in which magnetorheological fluid is used as the working fluid of the shock absorber.
Research methods. The design and principle of operation of controlled vane hydraulic shock absorber with magnetorheological (MR) throttles are considered. Method of calculation is proposed and theoretical studies are performed on influence of change of volume flow rate of working medium of shock absorber in MR throttle on forces of resistance to rotation on shaft of shock absorber blade.
The results of theoretical research. 1) Results of theoretical studies of change of volume flow rate of working medium of controlled hydraulic blade shock absorber are presented. 2) An adequate mathematical model is obtained that is suitable for calculating the characteristics of controlled (adjustable) hydraulic vane shock absorbers, where magnetorheological fluid is used as the working medium of the shock absorber, as well as for selecting control action in the control system. Conclusion. The results of the study are intended for organizations and enterprises engaged in the development and production of heavy high-speed tracked vehicles.
The results of the studies can be used to refine the methodology for estimating the smoothness of the heavy high-speed tracked vehicles.
About the Authors
S. V. KozeletovRussian Federation
Postgraduate student
Omsk
S. V. Saveliev
Russian Federation
Dr of Sci., Professor of the Operation of Oil and Gas and Construction Equipment Department, Motor Transport, Oil and Gas and Construction Equipment Institute
Omsk
References
1. Savel’ev Ju. F., Simak N. Ju. Vibrozashhita podvizhnogo sostava i jekipazha na osnove mehanicheskih ustrojstv so znakoperemennoj uprugost’ju [Vibration protection of rolling stock and crew based on mechanical devices with alternating elasticity]. Monografija. Omsk, 2010:187. (in Russ.)
2. Nakaznoj O. A., Cipilev A. A. K voprosu raschjota podvesok s gidravlicheskimi uprugimi jelementami [On the issue of calculation of suspensions with hydraulic elastic elements]. Izvestija MGTU MAMI. 2022; T. 16. № 2:135-148. (in Russ.)
3. Kozeletov S. V. Sposob povyshenija dempfirujushhih svojstv ustrojstv gashenija kolebanij korpusa tanka [A method for increasing the damping properties of vibration damping devices in a tank hull. strategic stability]. Strategicheskaja stabil’nost’. 2022; 3 (100): 45-48. (in Russ.)
4. Antonov I. V., Koval’ V. S., Rykov S. P. Ocenka dempfirujushhej sposobnosti gidravlicheskogo amortizatoroa: model’, oborudovanie, jeksperiment [Evaluation of the damping capacity of a hydraulic shock absorber: model, equipment, experiment]. Trudy Bratskogo gosudarstvennogo universiteta. Serija: Estestvennye i inzhenernye nauki. 2019; T. 1: 165-175. (in Russ.)
5. Perevozchikov Ju. A. Osobennosti raschetnoj modeli lopastnogo amortizatora [Features of the calculation model of a bladed shock absorber]. Izvestija TulGU. Tehnicheskie nauki. 2017; Vyp. 11. Ch. 3: 144-155. (in Russ.)
6. Altmeyer S. Uslozhnenie techenija pri nestacionarnoj moduljacii techenija Kujetta magnitnoj zhidkosti [Complication of the flow with non-stationary modulation of the Couette flow of a magnetic fluid]. Izvestija Rossijskoj akademii nauk. Mehanika zhidkosti i gaza. 2022; 3: 135-150. (in Russ.)
7. Ignatov A. N, Fadeeva N. E., Savinyh V. L. Analiz vozmozhnostej importozameshhenija jelektronnoj komponentnoj bazy [Analysis of the possibilities of import substitution of the electronic component base]. Monografija Izdatel’stvo: Infra-Inzhenerija. 2023: 148. ISBN: 978-5-9729-1402-9.
8. Galunin S. A., Sitnikov M. A., Lobovich A. Z. Tipovaja magnitnaja harakteristika jelektricheskih mashin. [Typical magnetic characteristics of electrical machines]. Jelektrotehnika. 2022; 3: 53-57. (in Russ.)
9. Eremochkin S. Ju., Dorohov D. V., Zhukov A. A. Razrabotka i issledovanie jenergojeffektivnogo jelektroprivoda dlja sel’skohozjajstvennyh mashin. [Development and research of an energy-efficient electric drive for agricultural machines] Izvestija Orenburgskogo gosudarstvennogo agrarnogo universiteta. 2023; 2 (100):129-134. (in Russ.)
10. Palashov V. V. Jelementy teorii obrazovanija jelektricheskogo toka v gruntovyh i vodnyh sredah (provodnikah vtorogo roda) [Jelektronnyj resurs]: monografija. [Elements of the theory of electric current generation in soil and water environments (conductors of the second kind)] V. V. Palashov; Nizhegor. gos. arhitektur.-stroit. un-t. N. Novgorod: NNGASU, 2016: 204. 1 jelektron. opt. disk (CD-R) ISBN 978-5-52800156-2. (in Russ.)
11. Isakov P. P. Teorija i konstrukcija tanka: T.6. Voprosy proektirovanija hodovoj chasti voennyh gusenichnyh mashin [Theory and design of the tank: V.6. Issues of designing the undercarriage of military tracked vehicles]. Moscow: Mashinostroenie, 1985: 245. (in Russ.)
Review
For citations:
Kozeletov S.V., Saveliev S.V. Mathematical model of controlled vane hydraulic shock absorber. The Russian Automobile and Highway Industry Journal. 2023;20(5):560-572. (In Russ.) https://doi.org/10.26518/2071-7296-2023-20-5-560-572. EDN: KBOCMW