Preview

The Russian Automobile and Highway Industry Journal

Advanced search

Electrolytic coating of iron-chromium alloy of sulphate-chloride electrolyte in machine parts recovery process modelling

https://doi.org/10.26518/2071-7296-2023-20-2-260-276

EDN: CBHVWL

Abstract

Introduction. The technological process of restoring a part should provide more than 80% of the resource and no more than 50% of the cost of a new part. The wear resistance of the applied coating determines the resource of the restored part operating under waterjet and boundary friction. The microhardness of an iron-based electrolytic coating is one of the key indicators of wear resistance. The study of the results of statistical processing and the factors most affecting the increase in the microhardness of the iron-based coating will make it possible to recommend and optimize the deposition conditions for obtaining the most wear-resistant coatings.

Materials and methods. The studies on equipment that let to obtain the necessary data with the required accuracy were carried out. The mathematical processing using modern statistical data processing tools that excluded possible errors, let to obtain the dependence of factors with the necessary accuracy was carried out.

Results. During the study of the developed sulfate-chloride electrolyte for the deposition of an iron–chromium coating, it became necessary to determine the effect of deposition conditions – ‘factors’ (temperature, acidity of the electrolyte, cathode current density) on the microhardness of the coating – ‘response’. It was found that the combination of the factors ‘temperature’ and ‘cathode current density’ in the coded values of 1.5. 2.0 and -2 are the most significant. The deposition conditions in order to obtain a coating with maximum microhardness are optimized.

Discussion and conclusions. As a result of the conducted studies for the effect of the deposition conditions  of the Fe-Cr alloy from the sulfate-chloride electrolyte on the microhardness of the coating, it was found that in order to obtain high-quality coatings of the iron-chromium alloy with high microhardness, it is necessary to strictly comply with the requirements of the deposition conditions and acidity to a greater extent. As the current density and temperature of the electrolyte, compared with the acidity of the electrolyte, iron baths are installed and regulated by equipment.

About the Authors

A. S. Lanuta
Moscow Automobile and Road Engineering State Technical University (MADI)
Russian Federation

Anton S. Lanuta – Postgraduate student of the Motor and Road Vehicles Production and Repair Department.

Moscow



Yu. V. Shtefan
Moscow Automobile and Road Engineering State Technical University (MADI)
Russian Federation

Yuri V. Shtefan – Cand. of Sci., Associate Professor of the Motor and Road Vehicles Production and Repair Department.

Moscow



V. К. Fiodorov
Moscow Automobile and Road Engineering State Technical University (MADI)
Russian Federation

Valerii K. Fiodorov – Dr. of Sci., Professor of the Motor and Road Vehicles Production and Repair Department.

Moscow



N. I. Korneichuk
Bendery Polytechnic Branch of T.G. Shevchenko Pridnestrovian State University
Moldova, Republic of

Nikolai I. Korneichuk – Cand. of Sci., Professor of the Engineering Sciences, Industry and Transport Department.

Bendery



References

1. Gustov Ju.I., Orehov A.A. Issledovanie konstrukcionno-tehnologicheskih i jekspluatacionnyh pokazatelej stroitel’noj tehniki [Research of structural, technological and operational indicators of construction equipment]. Izvestija Kazanskogo gosudarstvennogo arhitekturno-stroitel’nogo universiteta. 2014; 4 (30): 470-475. (In Russ.)

2. Muhametshina R. M. Tribologicheskie otkazy dorozhno-stroitel’nyh mashin [Tribological failures of road construction machines]. Izvestija Samarskogo nauchnogo centra Rossijskoj akademii nauk. 20216; T. 18, № 1-2, 2016: 252-255. (In Russ.)

3. Kotomchin A. N., Sinel’nikov A. F. Usovershenstvovanie holodnogo samoregulirujushhegosja jelektrolita hromirovanija pri uprochnenii i vosstanovlenii detalej mashin [Improvement of cold self-regulating chromium plating electrolyte during strengthening and restoration of machine parts]. Mir transporta i tehnologicheskih mashin. 2019; 4 (67): 17-24. (In Russ.)

4. Kotomchin A. N., Sinel’nikov A. F., Kornejchuk N. I. Intensifikacija processa jelektroliticheskogo hromirovanija pri vosstanovlenii i uprochnenii detalej mashin [Intensification of the electrolytic chrome plating process during the restoration and strengthening of machine parts]. Mir transporta i tehnologicheskih mashin. 2020; 3 (70): 22-32. (In Russ.)

5. Kotomchin A. N., Sinelnikov A. F. Installation for maintaining the operating temperature of electrolytes when restoring machine parts with electroplated coatings. The Russian Automobile and Highway Industry Journal. 2020;17 (4): 500-511. (In Russ.) https://doi.org/10.26518/2071-7296-2020-17-4-500-511

6. Januta A. S., Sinel’nikov A. F. Vysokie tehnologii i innovacii v nauke. Sbornik izbrannyh statej Mezhdunarodnoj nauchnoj konferencii [High technologies and innovations in science. Collection of selected articles of the International Scientific Conference]. Issledovanie vlijanija rezhimov osazhdenija na process osazhdenija splava Fe-Cr iz sul’fatnogo jelektrolita. Sankt-Peterburg. 2021:177-180. (In Russ.)

7. Bomeshko E. V., Kornejchuk N. I. Jelektroosazhdenie dvojnyh i trojnyh splavov na osnove zheleza i hroma: teoreticheskie predstavlenija i prakticheskie rekomendacii [Electrodeposition of double and triple alloys based on iron and chromium: theoretical representations and practical recommendations]. Vestnik PGU. 2019; T. 3, № 53:153-165. (In Russ.)

8. Gur’janov G. V., Kisel’ Ju. E., Lysenko A. N., Obozov A. A. Povyshenie iznosostojkosti detalejjelektrohimicheskimi splavami na osnove zheleza [Increasing wear resistance with iron-based parts]. Sel’skij mehanizator. 2017; 2, 2017: 34-35. (In Russ.)

9. Januta A.S., Kornejchuk N.I., Sinel’nikov A.F. Analiz primenenija jelektrolitov dlja poluchenija jelektroliticheskih splavov Fe-Cr pri vosstanovlenii detalej mashin i oborudovanija [Analysis of the use of electrolytes for the production of Fe-Cr electrolytic alloys when restoring parts of machines and equipment]. Vestnik PGU. 2021; (69): 101-106. (In Russ.)

10. Zhachkin S. Ju., Mihajlov V. V., Gedzenko D. V., Zhivogin A. A. Mikrotverdost’ kompozitnyh gal’vanicheskih pokrytij na osnove zheleznoj matricy [Microhardness of composite galvanic coatings based on an iron matrix]. Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo universiteta. 2012; T. 8, № 6: 51-53. (In Russ.)

11. Kolmykov D. V. Vosstanovlenie i uprochnenie detalej avtomobilej gal’vanicheskimi pokrytijami [Restoration and strengthening of car parts with galvanic coatings]. Glavnyj mehanik. 2010; 10, 2010: 33-38. (In Russ.)

12. Vinogradov S. N., Perelygin Ju. P., Kireev S. Ju. Iznosostojkost’ i antifrikcionnye svojstva gal’vanicheskih pokrytij. Metody opredelenija [Wear resistance and antifriction properties of galvanic coatings. Methods of determination]. Gal’vanotehnika i obrabotka poverhnosti. 2012; T. 20, № 3, 2012: 53-56. EDN PESEYT. (In Russ.)

13. Kotomchin A.N., Shtefan Yu.V., Zorin V.A. Simulation of current output during chrome plating of parts for hardening and car parts restoration. The Russian Automobile and Highway Industry Journal. 2020;17 (6): 736-753. (In Russ.) https://doi.org/10.26518/20717296-2020-17-6-736-752

14. Hlystov A.V., Babenko V.A. Matematicheskoe modelirovanie i optimizacija rezhimov zheleznenija v “gorjachih” hloristyh jelektrolitah na asimmetrichnom toke [Mathematical modeling and optimization of iron plating modes in “hot” chloride electrolytes on asymmetric current]. Vestnik Saratovskogo gosudarstvennogo tehnicheskogo universiteta. 2004. 4 (5), 2004: 44-47. (In Russ.)

15. Artemchuk V. V., Bosov A. A. Teoreticheskie osnovy matematicheskogo modelirovanija process ov jelektroliticheskogo pokrytija [Theoretical bases of mathematical modeling of processes of electrodeposited coating]. Vіsnik Dnіpropetrovs’kogo nacіonal’nogo unіversitetu zalіznichnogo transportu іm. akademіka V. Lazarjana. 2007; 15, 2007: 52-56. (In Russ.)

16. Afanas’ev E. A., Serebrovskij V. I., Serebrovskij V. V., Stepanov R. V., Stepashova I. V. Jelektroosazhdenie binarnyh pokrytij na osnove zheleza dlja uprochnenija i vosstanovlenija detalej mashin [Electrodeposition of binary coatings based on iron for strengthening and restoring machine parts]. Vestnik Kurskoj gosudarstvennoj sel’skohozjajstvennoj akademii 2012; 7, 2012: 79-81. (In Russ.)

17. Blinkov B. S., Serebrovskij V. V., Kaluckij E. S. Jelektroosazhdenie splavov na osnove zheleza [Electrodeposition of iron-based alloys]. Vestnik Kurskoj GSHA. 2016; 2, 2016: 67-71. (In Russ.)

18. Serebrovskij V. I., Serebrovskij V. V., Safronov R. I., Gnezdilova Ju. P. Uprochnjajushhee legirovanie jelektroosazhdennogo zheleza [Strengthening doping of electrodeposited iron]. Vestnik Kurskoj GSHA. 2015; 4, 2015: 68-71. (In Russ.)

19. Gadalov V. N., Safonov S. V., Serebrovs kij V. I., Skripkina Ju. V., Goreckij V. V. Renovacija mashinostroitel’noj i sel’skohozjajstvennoj tehniki gal’vanicheskimi zhelezohromistymi pokrytijami s primeneniem cementacii [Renovation of machine-building and agricultural equipment with galvanic iron-chromium coatings using cementation]. Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo universiteta. 2013; T. 9 (4): 54-58. (In Russ.)

20. Januta A. S. Issledovanie vlijanija rezhimov osazhdenija na strukturu jelektroliticheskogo binarnogo pokrytija Fe-Cr, poluchenogo iz sul’fatno-hloridnogo jelektrolita [Study of the influence of deposition modes on the structure of the electrolytic binary coating FeCr obtained from sulfate-chloride electrolyte]. Vestnik Moskovskogo avtomobil’no-dorozhnogo gosudarstvennogo tehnicheskogo universiteta (MADI). 2022; 3 (70), 2022: 17-21. (In Russ.)

21. Sinelnikov A. F., Bomeshko E. V., Korneychuk N. I., Ianuta A. S. Electrolytic alloying of iron-chromium during deposition of coatings from a sulfate-chloride electrolyte. IOP Conf. Series: Materials Science and Engineering (14th-16th December 2020, Moscow). Moscow. 2020. pp. 1-9.

22. Shtefan Ju.V., Zorin V.A. Metody vyjavlenija i ocenki riskov v dorozhnom stroitel’stve i mashinostroenii: monografija [Methods for identifying and assessing risks in road construction and mechanical engineering: monograph]. Moscow: MADI. 2017: 136.

23. Zorin V. A., Shtefan Ju. V., Timchenko M. I. Planirovanie jeksperimentov pri sozdanii detalej iz kompozicionnyh materialov [Planning experiments when creating parts from composite materials]. Mehanizacija stroitel’stva. 2018. 79 (4): 5-13. (In Russ.)


Review

For citations:


Lanuta A.S., Shtefan Yu.V., Fiodorov V.К., Korneichuk N.I. Electrolytic coating of iron-chromium alloy of sulphate-chloride electrolyte in machine parts recovery process modelling. The Russian Automobile and Highway Industry Journal. 2023;20(2):260-276. (In Russ.) https://doi.org/10.26518/2071-7296-2023-20-2-260-276. EDN: CBHVWL

Views: 291


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-7296 (Print)
ISSN 2658-5626 (Online)