Образование и влияние сажи на моторные масла
https://doi.org/10.26518/2071-7296-2023-20-2-248-259
EDN: ZPHHOZ
Аннотация
Введение. В процессе сгорания дизельного топлива в дизельном двигателе при повышенной подаче топлива в результате его неполного сгорания образуются частицы сажи, которые либо выбрасываются в атмосферу, либо попадают в моторное масло. Сажа, загрязняя моторное масло, вызывает изменение его показателей качества. Сажа представляет собой очень мелкие частицы, образующиеся по сложному механизму реакции в пламени богатой топливом области при сжигании углеводородов в отсутствие воздуха, в основном состоящие из смеси аморфного углерода и органического вещества.
Материалы и методы. В данной работе приведены результаты литературного обзора, направленного на изучение путей возникновения сажи при эксплуатации дизельных двигателей , ее влияния на поверхности пар трения и узлов двигателя, также обсуждаются механические свойства дизельной сажи. Выводы. Содержание сажи в моторном масле резко возрастет в двигателях с рециркуляцией отработавших газов, что приводит к повышению температуры в зонах трения и вязкости смазочного материала, а также к образованию отложений на горячих деталях. Эти процессы происходят по причине разряжения в картерном пространстве и интенсификации поступления газов из камеры сгорания. Интервалы замены масла необходимо контролировать при повышенной интенсивности поступления сажи в моторное масло.
Рамки исследования/возможности. Такого вида исследование поможет определить причины возникновения сажи в дизельном двигателе, понять последствия использования загрязненного частицами сажи моторного масла.
Оригинальность/ценность. Проведенное исследование может являться основой для разработки рекомендаций по совершенствованию технического обслуживания двигателей внутреннего сгорания для предприятий, имеющих в своем распоряжении автомобили с дизельными двигателями с целью увеличения ресурса силовых агрегатов и сокращения эксплуатационных затрат.
Ключевые слова
Об авторе
С. В. ПашукевичРоссия
Пашукевич София Вячеславовна – аспирант группы Ма – 202 кафедры «Химия и химическая технология».
Омск
Список литературы
1. E J., Xu W., Ma Yi, Tan D., Peng Q., Tan Ya., Chen L. Soot formation mechanism of modern automobile engines and methods of reducing soot emissions: A review. Fuel Processing Technology. 2022. 235: 107373. https://doi.org/10.1016/j.fuproc.2022.107373
2. Omar A. Al Sh., Salehi F. M., Farooq U., Morina A., Neville A. Chemical and physical assessment of engine oils degradation and additive depletion by soot. Tribology International. 2021. 160: 107054. https://doi.org/10.1016/j.triboint.2021.107054
3. Wei J., Lu W., Zeng Y., Huang H., Pan M., Liu Y. Physicochemical properties and oxidation reactivity of exhaust soot from a modern diesel engine: Effect of oxyfuel type. Combustion and Flame. 2022. 238: 111940. https://doi.org/10.1016/j.combustflame.2021.111940
4. Wang Y., Zhuang Y., Yao M., Qin Y., Zheng Zh. An experimental investigation into the soot particle emissions at early injection timings in a single-cylinder research diesel engine. Fuel. 2022.316: 123288.https://doi.org/10.1016/j.fuel.2022.123288
5. Zhang X., Song Ch., Lyu G., Li Yu., Qiao Yu., Li Zh. Physicochemical analysis of the exhaust soot from a gasoline direct injection (GDI) engine and the carbon black. Fuel. 2022. 322. 124262https://doi.org/10.1016/j.fuel.2022.124262
6. Liang X., Wang Ya., Wang Yu., Zhao B., Zhang Z., Lv X., Wu Zh., Cai X., Wang K. Impact of lubricating base oil on diesel soot oxidation reactivity. Combustion and Flame. 2020. 217. Pp. 77-84. https://doi.org/10.1016/j.combustflame.2020.03.035
7. Liang X., Zhao B., Wang K., Lv X., Wang Ya., Liu J., Wang Yu. Impact of early injection on physicochemical characteristics of diesel soot particles. Fuel. 2021. 292. 120262. https://doi.org/10.1016/j.fuel.2021.120262
8. Lapuerta M., Rodríguez–Fernández J., Sánchez-Valdepeñas J. Soot reactivity analysis and implications on diesel filter regeneration. Progress in Energy and Combustion Science. 2020. 78. 100833.https://doi.org/10.1016/j.pecs.2020.100833
9. Liu X., Liu J., Zhao L., Ma Zh., Li J., Wang X., Chen W., He Ch. Effects of operating conditions on the morphology and internal structure of soot particles emitted from an agricultural tractor. Biosystems Engineering. 2020. 198 .pp. 280-290. https://doi.org/10.1016/j.biosys-temseng.2020.08.018
10. Wang Yu., Chen Yu, Liang X., Tan P., Deng S. Impacts of lubricating oil and its formulations on diesel engine particle characteristics. Combustion and Flame. 2021. 225. Pp. 48-56.https://doi.org/10.1016/j.combustflame.2020.10.047
11. Wolak A., Molenda J., Zając G., Janocha P. Identifying and modelling changes in chemical properties of engine oils by use of infrared spectroscopy. Measurement. 2021. 186. 110141. https://doi.org/10.1016/j.measurement.2021.110141
12. Kozina A., Radica G., Nižetić S. Analysis of methods towards reduction of harmful pollutants from diesel engines. Journal of Cleaner Production. 2020. 262. 121105.https://doi.org/10.1016/j.jclepro.2020.121105
13. Qian Y., Li Z., Yu L., Wang X., Lu X. Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines. Applied Energy. 2019. 238. Pp. 1269-1298. https://doi.org/10.1016/j.apenergy.2019.01.179
14. Eismark J., Christensen M., Andersson M., Karlsson A., Denbratt I. Role of fuel properties and piston shape in influencing soot oxidation in heavy-duty low swirl diesel engine combustion. Fuel. 2019. 254. 115568 https://doi.org/10.1016/j.fuel.2019.05.151. Neha, Prasad R., Singh S.V. A review on catalytic oxidation of soot emitted from diesel fuelled engines. Journal of Environmental Chemical Engineering. 2020. 8. 103945. https://doi.org/10.1016/j.jece.2020.103945
15. Tan P., Cao Ch., Hu Zh., Lou D. Modeling of soot fragmentation that proceeds in a catalyzed diesel particulate filter of a diesel engine. Chemical Engineering Journal. 2019. 375. 122110. https://doi.org/10.1016/j.cej.2019.122110
16. Guo Yi, Horchler E. J., Fairley N., Stevanovic S., Shang J., Ristovski Z. An experimental investigation of diesel soot thermal-induced oxidation based on the chemical structure evolution. Carbon. 2022. 188. Pp. 246-253. https://doi.org/10.1016/j.carbon.2021.11.068
17. Wang Zh., Shen L., Lei J., Yao G., Wang G. Impact characteristics of post injection on exhaust temperature and hydrocarbon emissions of a diesel engine. Energy Reports. 2022. 8. Pp. 4332-4343. https://doi.org/10.1016/j.egyr.2022.03.080
18. Ni P., Bai L., Wang X., Li R. Characteristics of evolution of in-cylinder soot particle size and number density in a diesel engine. Fuel. 2018. 228. 215-225. https://doi.org/10.1016/j.fuel.2018.04.158
19. Yildiz I., Caliskan H., Mori K. Effects of cordierite particulate filters on diesel engine exhaust emissions in terms of pollution prevention approaches for better environmental management. Journal of Environmental Management. 2021. 293. 112873. https://doi.org/10.1016/j.jenvman.2021.112873
20. Wu H., Dong X., Shi Zh., Li H., Cao W., Zhang L., Bo Ya., Li X. Effect of injection timing on knock combustion and pollutant emission of heavy-duty diesel engines at low temperatures. Chemosphere. 2022. 305. 135519. https://doi.org/10.1016/j.chemosphere.2022.135519
21. Zhang W., Fan Ch., Lyu G., Li Yu., Liu Ye, Wang Ch., Song Ch. An analysis of the in-cylinder soots generated from the mainand post-injection combustion in diesel engines. Proceedings of the Combustion Institute. 2022. https://doi.org/10.1016/j.proci.2022.07.216.
22. Abián M., Martín Cr., Nogueras P., Sánchez-Valdepeñas J., Rodríguez-Fernández J., Lapuerta M., Alzueta M. U. Interaction of diesel engine soot with NO2 and O2 at diesel exhaust conditions. Effect of fuel and engine operation mode. Fuel. 2018. 212. Pp. 455461. https://doi.org/10.1016/j.fuel.2017.10.025
23. Rohani B., Bae Ch. Morphology and nano-structure of soot in diesel spray and in engine exhaust. Fuel. 2017. 203. Pp. 47-56. https://doi.org/10.1016/j.fuel.2017.04.093
24. Sun Ch., Martin J., Boehman A. L. Impacts of advanced diesel combustion operation and fuel formulation on soot nanostructure and reactivity. Fuel. 2020. 276.118080. https://doi.org/10.1016/j.fuel.2020.118080
25. Tormos B., Novella R., Gomez-Soriano J., García-Barberá A., Tsuji N., Uehara I., Alonso M. Study of the influence of emission control strategies on the soot content and fuel dilution in engine oil. Tribology International. 2019. 136. Pp. 285-298. https://doi.org/10.1016/j.triboint.2019.03.066
26. Hosseini S. H., Rastegari H., Aghbashlo M., Hajiahmad A., Hosseinzadeh-Bandbafha H., Mohammadi P., Sisi A. J., Khalife E., Lam S. Sh., Pan J., Khataee A., Tabatabaei M. Effects of metal-organic framework nanoparticles on the combustion, performance, and emission characteristics of a diesel engine. Energy. 2022. 260. 125070. https://doi.org/10.1016/j.energy.2022.125070
27. Guo Y., Ristovski Z., Graham E., Stevanovic S., Verma P., Jafari M., Miljevic B., Brown R. The correlation between diesel soot chemical structure and reactivity. Carbon. 2020. 161. Pp. 736-749. https://doi.org/10.1016/j.carbon.2020.01.061
28. Zhang Q., Liu Sh., Wang Zh., Li R., Zhang L., Dong Zh. Effects of a barium-based additive on gaseous and particulate emissions of a diesel engine. Journal of Hazardous Materials. 2022. 427. 128124. https://doi.org/10.1016/j.jhazmat.2021.128124
29. Fattah I.M. R., Yip Ho L., Jiang Zh., Yuen A.C.Y., Yang W., Medwell P. R., Kook S., Yeoh G.H., Chan Q.N. Effects of flame-plane wall impingement on diesel combustion and soot processes. Fuel. 2019. 255. 115726. https://doi.org/10.1016/j.fuel.2019.115726
30. Salehi F. M., Morina A., Neville A. The effect of soot and diesel contamination on wear and friction of engine oil pump. Tribology International. 2017.115. pp. 285-296. https://doi.org/10.1016/j.triboint.2017.05.041
31. Zhu D., Zhao R, Wu H., Shi Zh., Li X. Experimental study on combustion and emission characteristics of diesel engine with high supercharged condition. Chemosphere. 2022. 304. 135336. https://doi.org/10.1016/j.chemosphere.2022.135336
32. Cao Z, Wu H, Chen Z, Xiao P,Hu Z, Li X. Numerical investigation of component coupling effect on soot forming under low temperature condition. Fuel. 2022. 330. 125630.https://doi.org/10.1016/j.fuel.2022.125630
33. Fuad A., Rasid A., Zhang Ya. Comparison of the burning of a single diesel droplet with volume and surface contamination of soot particles. Proceedings of the Combustion Institute. 2021. 38. Pp. 3159-3166. https://doi.org/10.1016/j.proci.2020.07.092.
34. Fan Ch., Song Ch., Lv G., Wei J., Zhang X., Qiao Yu., Liu Ye. Impact of post-injection strategy on the physicochemical properties and reactivity of diesel in-cylinder soot. Proceedings of the Combustion Institute. 2019. 37. Pp. 4821-4829. https://doi.org/10.1016/j.proci.2018.08.001.
35. Cadrazco M., Santamaría A., Agudelo J. R. Chemical and nanostructural characteristics of the particulate matter produced by renewable diesel fuel in an automotive diesel engine. Combustion and Flame. 2019. 203. Pp. 130-142. https://doi.org/10.1016/j.combustflame.2019.02.010.
36. Wu H., Xie F., Han Y., Zhang Q., Li Y. Effect of cetane coupled injection parameters on diesel engine combustion and emissions. Fuel. 2022. 319. 123714. https://doi.org/10.1016/j.fuel.2022.123714.
37. Kurien C., Srivastava A. K., Gandigudi N., Anand K. Soot deposition effects and microwave regeneration modelling of diesel particulate filtration system. Journal of the Energy Institute. 2020. 93. Pp. 463-473. https://doi.org/10.1016/j.joei.2019.07.005.
38. Rocca A.La, Ferrante A., Haffner-Staton E., Cairns A., Weilhard A., Sans V., Carlucci A. P., Laforgia D. Investigating the impact of copper leaching on combustion characteristics and particulate emissions in HPCR diesel engines. Fuel. 2020. 263. 116719. https://doi.org/10.1016/j.fuel.2019.116719.
39. Verma P., Pickering E., Jafari M., Guo Yi, Stevanovic S., Fernando J.F.S., Golberg D., Brooks P., Brown R., Ristovski Z. Influence of fuel-oxygen con tent on morphology and nanostructure of soot particles. Combustion and Flame. 2019. 205. Pp. 206-219. https://doi.org/10.1016/j.combustflame.2019.04.009.
40. Ferraro G., Fratini E., Rausa R., Baglioni P. Impact of oil aging and composition on the morphology and structure of diesel soot. Journal of Colloid and Interface Science. 2018. 512: 291-299. https://doi.org/10.1016/j.jcis.2017.10.033.
41. Pfau S.A., Rocca A. La, Haffner-Staton E., Rance G.A., Fay M.W., Brough, S. Malizia R.J. Comparative nanostructure analysis of gasoline turbocharged direct injection and diesel soot-in-oil with carbon black. Carbon. 2018. 139. Pp. 342-352. https://doi.org/10.1016/j.carbon.2018.06.050.
42. Bagi S., Sharma V., Aswath P. B. Role of dispersant on soot-induced wear in Cummins ISB engine test. Carbon. 2018. vol. 136. pp. 395-408. https://doi.org/10.1016/j.carbon.2018.04.066.
43. Korneev S. V., Bakulina V. D., Yarmovich Y. V., Pashukevich S. V. Influence of base oils on changes in the performance characteristics of motor oils when exposed to high temperatures and diluted with fuel // AIP Conference Proceedings, Omsk, 24–27 february 2021. Omsk, 2021. P. 020001. DOI:10.1063/5.0075527. EDN UOLQSH.
Рецензия
Для цитирования:
Пашукевич С.В. Образование и влияние сажи на моторные масла. Научный рецензируемый журнал "Вестник СибАДИ". 2023;20(2):248-259. https://doi.org/10.26518/2071-7296-2023-20-2-248-259. EDN: ZPHHOZ
For citation:
Pashukevich S.V. Soot formation and effect on engine oils. The Russian Automobile and Highway Industry Journal. 2023;20(2):248-259. (In Russ.) https://doi.org/10.26518/2071-7296-2023-20-2-248-259. EDN: ZPHHOZ