Preview

The Russian Automobile and Highway Industry Journal

Advanced search

Quartz microfill dispersion optimisation

https://doi.org/10.26518/2071-7296-2023-20-1-150-157

Abstract

Introduction. One of the problems of developing new generation concrete is to ensure the rational granulometric composition of a mixture of cement and fine additives to ensure the densest packing of all particles of the cement system. In this regard, the paper considers the optimization of the dispersed structure of quartz filler, taking into account its specific surface area, concentration in the composition of the binder and water-solid ratio.
Materials and methods. In the studies, Portland cement TSEM I 42.5 N (GOST 31108-2020) of ZAO Belgorod Cement and fine quartz were used. The compressive strength samples were tested on a PGM-100 MG4 laboratory press. The granulometric composition of the fillers was determined using Analysette 22 NanoTec plus laser diffraction particle size analyzer.
Results. The conducted studies have allowed to determine that the optimal dosages of microdispersion filler are closely related to the specific surface area and the V/T of the mixture. It is shown that with an increase in the dispersion of quartz filler, a decrease in the range of optimal dosages is observed, which narrows with an increase in the water-solid ratio. The mechanisms of structure formation affecting the properties of dispersed-optimized cement systems are described. With the growth of the specific surface of the filler, the specific activity of the unit of the surface of the filled binder decreases, which is accompanied by a decrease in the number of crystallizationcoagulation bonds between the hydrate phases of cement.
Conclusion. The experimental data obtained confirm that for a cement stone made of a mixed binder, the watersolid ratio is no less significant than the concentration of a mineral additive, therefore, a decrease in the V/T of mixed cements is a necessary condition for achieving a given strength.

About the Authors

N. M. Tolypina
Shukhov Belgorod State Technological University
Russian Federation

Natalia M. Tolypina – Dr. of Sci., Associate Professor, Construction Materials Science, Products and Structures Department

Belgorod



E. N. KHakhaleva
Shukhov Belgorod State Technological University
Russian Federation

Elena N. Khakhaleva – Cand. of Sci., Associate Professor, Construction and Urban Economy Department

Belgorod



D. A. Tolypin
Shukhov Belgorod State Technological University
Russian Federation

Daniil А. Tolypin – Master’s student, Construction Materials Science, Products and Structures Department

Belgorod



References

1. Kalashnikov V.I., Tarakanov O.V., Kuznetsov Yu.S., Volodin V.M., Belyakova E.A. Be-tony novogo pokoleniya na osnove sukhikh tonkozernisto-poroshkovykh smesei [New generation concretes based on dry fine-grain-powder mixtures]. Inzhenerno-stroitel’nyi zhurnal. 2012; 8 (34): 47-53. (in Russ.)

2. Sanjuan M., Andrade C. Reactive Powder Concrete: Durability and Applications. Applied Sciences. 2021; 11(12): 5629. https://doi.org/10.3390/app11125629

3. Azmee N. M., Shafiq N., Case Stud. Constr. Mater., Ultra-High Performance Concrete: From Fundamental to Applications. Case Studies in Construction Materials. 2018; 9. doi:10.1016/j.cscm.2018.e00197

4. Ng K. M., Tam C. M., Tam V. W. Studying the production process and mechanical properties of reactive powder concrete: A Hong Kong study. Magazine of Concrete Research. 2010; Vol.62. No. 9: 647-654. doi:10.1680/macr.9.00063

5. Shaheen E., Shrive N. Optimization of Mechanical Properties and Durability of Reactive Powder Concrete. ACI Materials Journal. 2006; 103 (6): 444-451. doi:10.14359/18222

6. Sadrekarimi A. Development of a Light Weight Reactive Powder Concrete. Journal of Advanced Concrete Technology. 2004; Vol. 2, No. 3: 409-417. doi: 10.3151/jact.2.409

7. Aravindhan J., Vijayakumar G. Studies on strength characteristics of reactive powder concrete. International Journal of Chemical Sciences. 2016; 14 (S1): 149-154.

8. Tolstoi A. D., Lesovik V. S., Zagorodnyuk L. Kh., Kovaleva I. A. Poroshkovye betony s primeneniem tekhnogennogo syr’ya [Powder concretes using manmade raw materials]. Vestnik MGSU. 2015; 11: 101-109. (in Russ.)

9. Long G., Wang X., Xie Y. Very-high-performance concrete with ultrafine powders. Cement and Concrete Research. 2002; 32(4): 601-605. doi:10.1016/S0008-8846(01)00732-3

10. Velichko E., Shokodko E. Reactive powder concrete based on multicomponent cement systems with multilevel optimization of the disperse composition. MATEC Web of Conferences. 2018. 251, 01042. doi:10.1051/matecconf/201825101042

11. Hamiruddin N. A., Razak R.A., Muhamad K. The Effect of Different Sand Gradation with Ultra High Performance Concrete (UHPC). 2018. Diffusion and Defect Data Pt. B: Solid State Phenomena. 280, 476-480. doi:10.4028/www.scientific.net/SSP.280.476

12. Tikkanen J., Penttala V., Cwirzen A. Mineral powder concrete – Effects of powder content on concrete properties. Magazine of Concrete Research. 2011; 63 (12): 893-903 doi:10.1680/macr.10.00048

13. Bentz D. P., Conway J.T. Computer modelling of the replacement of «coarse» cement particles by inert fillers in low w/c ratio concretes: Hydration and strength. Cement and Concrete Research. 2001; 31(3): 503–506. doi:10.1016/S0008-8846(01)00456-2

14. Belov V. V., Obraztsov I. V., Kulyaev P. V. Metodologiya proektirovaniya optimal’nykh struktur tsementnykh betonov [Methodology for Designing Optimal Cement Concrete Structures]. Stroitel’nye materialy. 2013; 3: 17-21. (in Russ.)

15. Entin Z. B., Nefedova D. S. O dispersnosti i granulometrii rossiiskikh i zarubezh-nykh tsementov [Dispersion and granulometry of Russian and foreign cements]. Tsement i ego primenenie. 2008; 3: 86-88. (in Russ.)

16. Aichin P. K., Uilson U., Mindess S. Uvelichenie prochnosti betonov, izgotovlennykh iz smeshannykh tsementov [Increased strength of concretes made of mixed cements]. Tsement i ego primenenie. 2018; 5. 2018: 67-70. (in Russ.)

17. Kalashnikov V. I., Moskvin R. N., Belyakova E. A., Belyakova V. S., Petukhov A. V. Vyso-kodispersnye napolniteli dlya poroshkovo-aktivirovannykh betonov novogo pokoleniya [Highly dispersed fillers for next-generation powder-activated concretes]. Si-stemy. Metody. Tekhnologii. 2014; 2 (22):113–118. (in Russ.)

18. Moosberg-Bustnes H. The function of fillers in concrete. Materials and Structures. 2004; 37(2): 74-81. doi:10.1617/13694

19. Dykin I. V., Velichko E. G., Eremin A. V. Poroshkovo-aktivirovannye betony – mno-gourovnevo-modifitsirovannye tsementnye sistemy [Powder-activated concretes - multilevel-modified cement systems]. Mezhdunarodnyi nauchno-issledovatel’skii zhurnal. 2017; 3-4 (57): 37-40. (in Russ.)

20. Belov V. V., Smirnov M. A. Stroitel’nye kompozity iz optimizirovannyh mine-ral’nyh smesej: monografiya [Construction composites from optimized mineral mixtures: monograph]. Tver’: TvGTU, 2012; 112. (in Russ.)

21. Anan’ev S. V., Kalashnikov V. I., Suzdal’tsev O. V., Dryanin R. A. Vliyanie tonkosti pomola i kachestva kvartsevogo peska na prochnostnye svoistva poroshkovogo betona [Influence of fineness of grinding and quality of quartz sand on strength properties of powder concrete]. Nauka i mir. 2014; 8 (12): 34-36. (in Russ.)


Review

For citations:


Tolypina N.M., KHakhaleva E.N., Tolypin D.A. Quartz microfill dispersion optimisation. The Russian Automobile and Highway Industry Journal. 2023;20(1):150-157. (In Russ.) https://doi.org/10.26518/2071-7296-2023-20-1-150-157

Views: 259


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-7296 (Print)
ISSN 2658-5626 (Online)