Preview

The Russian Automobile and Highway Industry Journal

Advanced search

Motor driving force of bridge-type crane lifting mechanism under real operating use

https://doi.org/10.26518/2071-7296-2023-20-1-34-50

Abstract

Introduction. The requirement for modelling the dynamic processes of a hoisting mechanism in real operating situations has been revealed. The necessity of increasing the accuracy of moving effort description for the most common types of crane hoist drive control has been determined.
Materials and Methods. The operation of a single-speed electric motor with squirrel-cage rotor without speed control, with a phase rotor and additional resistors in the rotor winding and with a squirrel-cage rotor and control by a frequency converter has been considered. The static characteristic of the electric motor is taken as the initial function. The Clauss formula with the corresponding values of the parameters synchronous speed, critical force and critical slip was used to take into account the driving force of the motor for frequency control and for relay-contactor control and a motor with a phase-rotor and additional resistances in the rotor circuit.
Results. The dependences for the motor driving force with the most common methods of speed control of the crane hoisting mechanism drive are presented. In the case of the frequency control system, the form of the motor driving force is given in the case of steady-state motion and in the case of transient starting/braking processes when the corresponding algorithms are implemented by a frequency converter. Experimental and theoretical graphs of the load lifting processes for the cases of lifting with pickup in the relay-contactor control system and with elastic pickup in the frequency control system are given.
Conclusion. The conclusion about applicability of static mechanical characteristic for description of electric motor operation in crane drives is given. The presented dependences provide an opportunity to model the full working cycle of the hoisting mechanism. The dependences are valid both during steady motion of the mechanism and during transients. It is concluded about the use of the dynamic model taking into account the presented form of the motor driving force for practical purposes for the analysis of the crane operation with regard to the effect of the lifting capacity limiter.

About the Author

A. N. Nazarov
Bauman Moscow State Technical University
Russian Federation

Alexander N. Nazarov –Postgraduate student, Assistant of the Lifting and Transport Systems Department

Moscow



References

1. Melehina O. V., Hamula M. A., Lomov M. V. Obespechenie bezopasnosti mostovyh kranov s vysokim srokom sluzhby [Ensuring the safety of bridge cranes with a high service life]. Jelektronnyj setevoj politematicheskij zhurnal “Nauchnye trudy KubGTU”. 2019; 1:128-134. EDN: YWTVMD. (In Russ.)

2. Izvekov Ju. A. Nauchno-metodicheskaja baza ocenki kachestva tehnicheskih sistem metallurgicheskogo predprijatija [Scientific and methodological basis for assessing the quality of technical systems of a metallurgical enterprise]. Vestnik Magnitogorskogo gosudarstvennogo tehnicheskogo universiteta im. G.I. Nosova. 2021; T. 19. 2: 98-102. DOI 10.18503/1995-2732-2021-19-2-98-102. EDN: WETHMO. (In Russ.)

3. Simonova M. A., Novikov A. V. Metodika ocenki promyshlennogo riska pri peremeshhenii gruzov gruzopod’emnymi mehanizmami [Methodology for assessing industrial risk when moving cargo by lifting mechanisms]. XXI vek: itogi proshlogo i problemy nastojashhego pljus. 2021; T. 10. no 2(54): 203-209. DOI 10.46548/21vek-2021-1054-0040. EDN: POVYPP. (In Russ.)

4. Budikov L. Ja., Gusev V. V., Shabel’nikov K. V. Analiz dinamiki razgona i tormozhenija mostovyh kranov [Analysis of the dynamics of acceleration and braking of overhead cranes]. Social’no-jekonomicheskie i tehnicheskie sistemy: issledovanie, proektirovanie, optimizacija. 2021; 2(88): 17-31. EDN: FXEFVD. (in Russ.)

5. Romanova E. I., Zajarnyj S. L. Matematicheskie modeli jelektroprivoda kranovogo mehanizma [Mathematical models of electric crane mechanism drive]. Jelektronnyj zhurnal: nauka, tehnika i obrazovanie. 2019; 2(24):44-49. EDN: EYCDLZ. (In Russ.)

6. Enin S. S., Omel’chenko E. Ja., Belyj A. V., Fomin N. V. Opisanie dvizhenija mehanizmov mostovogo krana uravnenijami Lagranzha II roda [Description of the movement of bridge crane mechanisms by Lagrange equations of the second kind]. Vestnik Magnitogorskogo gosudarstvennogo tehnicheskogo universiteta im. G.I. Nosova. 2017; T. 15. no 3: 68-73. DOI 10.18503/1995-2732-2017-15-3-68-73. EDN ZGRVAP. (In Russ.)

7. Romanova E. I., Zajarnyj S. L. Matematicheskie modeli jelektroprivoda kranovogo mehanizma [Mathematical models of electric crane mechanism drive]. Jelektronnyj zhurnal: nauka, tehnika i obrazovanie. 2019; 2(24): 44-49. EDN: EYCDLZ. (In Russ.)

8. Kuljabko V. V. Ispol’zovanie dinamicheskih harakteristik pri formoobrazovanii, konstruirovanii i diagnostike slozhnyh sooruzhenij, massivov i sred [The use of dynamic characteristics in shaping, designing and diagnostics of complex structures, arrays and environments]. Sovremennye innovacionnye tehnologii podgotovki inzhenernyh kadrov dlja gornoj promyshlennosti i transporta. 2020; 1(7): 236-245. EDN: BWXMJJ. (In Russ.)

9. Sinel’shhikov A. V., Panasenko N. N. Sravnitel’nyj analiz raschetno-dinamicheskih modelej portovyh kranov na osnove odno- i dvumernyh konechnyh jelementov [Comparative analysis of computational and dynamic models of port cranes based on one- and two-dimensional finite elements]. Vestnik Astrahanskogo gosudarstvennogo tehnicheskogo universiteta. Serija: Morskaja tehnika i tehnologija. 2019; 2: 127-144. DOI 10.24143/2073-1574-2019-2-127-144. EDN: CGAFVJ. (In Russ.)

10. Shakarov K. K., Ivanov S. D., Nosko A. L. Opredelenie parametrov matematicheskoj modeli mehanizma pod’ema mostovogo krana, osnashhennogo ogranichitelem gruzopod’emnosti [Determination of parameters of a mathematical model of the lifting mechanism of a bridge crane equipped with a load capacity limiter]. Mehanizacija stroitel’stva. 2017; T. 78. no 6: 44-47. EDN: YQFTZZ. (In Russ.)

11. Semykina I. Ju., Kipervasser M. V., Gerasimuk A. V. Issledovanie tokov privoda pod’ema mostovyh kranov metallurgicheskih predprijatij dlja rannego diagnostirovanija prevyshenija massy gruza [Investigation of the lifting drive currents of bridge cranes of metallurgical enterprises for early diagnosis of excess weight of cargo]. Zapiski Gornogo instituta. 2021; T. 247: 122-131. DOI 10.31897/PMI.2021.1.13. EDN: FLZYSZ. (In Russ.)

12. Lovejkin V. S., Chovnjuk Ju. V., Kadykalo I. A. Utochnennyj analiz i minimizacija dinamicheskih nagruzok v uprugih jelementah gruzopod’emnyh mashin [Refined analysis and minimization of dynamic loads in elastic elements of lifting machines]. Vestnik Permskogo nacional’nogo issledovatel’skogo politehnicheskogo universiteta. Geologija. Neftegazovoe i gornoe delo. 2016; T. 15. no 21: 354-361. DOI 10.15593/2224-9923/2016.21.7. EDN: YKHMAV. (In Russ.)

13. Ermolenko V. A., Vitchuk P. V. Osobennosti rascheta pokazatelej nadezhnosti gruzopod’emnyh mashin [Features of calculating reliability indicators of lifting machines]. 2016; T. 16. no 2(57): 20-25. EDN: WHGDRJ. (In Russ.)

14. Ivanov S. D., Nazarov A. N. Drive electrical parameters applicability evaluation to determine loads on bridge crane lifting mechanism. The Russian Automobile and Highway Industry Journal. 2022;19(1):36- 47. (In Russ.) https://doi.org/10.26518/2071-7296-2022-19-1-36-47

15. Lobov N. A. Dinamika gruzopod’emnyh kranov [Dynamics of lifting cranes]. Moscow: Mashinostroenie, 1987:160.

16. Shilin A. N., Arvanitaki N. V., Artjushenko N. S. Raschet puskovyh tokov asinhronnyh jelektroprivodov po shemam zameshhenija [. Calculation of starting currents of asynchronous electric drives according to substitution schemes]. Jelektro. Jelektrotehnika, jelektrojenergetika, jelektrotehnicheskaja promyshlennost’. 2015; 3: 38-42. EDN: RXWWAC. (In Russ.)

17. Denisov V. A., Tret’jakova M. N., Borodin O. A. Sravnitel’nyj analiz perehodnyh processov v asinhronnom jelektrodvigatele []. Jelektrotehnika. 2018; 3: 2-7. EDN: VCPNXQ. (In Russ)

18. Dadabaev Sh. T., Gracheva E. I., Karimov I. R., Valtchev S. Issledovanie puskovyh rezhimov asinhronnyh dvigatelej pri nizkom kachestve jelektrojenergii pitajushhej seti [Comparative analysis of transients in an asynchronous electric motor]. Vestnik Kazanskogo gosudarstvennogo jenergeticheskogo universiteta. 2021; T. 13. № 1(49): 3-15. EDN OOZYKS. (In Russ)

19. Pastuhov V. V., Korneev K. V. Raschet puska asinhronnogo dvigatelja s uchetom izmenenija parametrov rotora [Investigation of starting modes of asynchronous motors at low quality of power supply network]. Jelektro. Jelektrotehnika, jelektrojenergetika, jelektrotehnicheskaja promyshlennost’. 2011; 5: 45-52. EDN: OIKGGF. (In Russ)

20. Popov E. V., Onishhenko G. B. Chastotno-reguliruemyj jelektroprivod mehanizmov gruzopod’jomnyh kranov [Calculation of asynchronous motor start taking into account changes in rotor parameters]. Izvestija Tul’skogo gosudarstvennogo universiteta. Tehnicheskie nauki. 2010; 3-2: 179-184. EDN: TBRZDJ. (In Russ)

21. Galkin A. V., Djatchina D. V. Chislennoe reshenie matematicheskih modelej ob’ektov, zadannyh sostavnymi sistemami differencial’nyh uravnenij [Numerical solution of mathematical models of objects given by composite systems of differential equations]. Sovremennye problemy nauki i obrazovanija. 2011; 6: 127. EDN OQNHJF. (In Russ)


Review

For citations:


Nazarov A.N. Motor driving force of bridge-type crane lifting mechanism under real operating use. The Russian Automobile and Highway Industry Journal. 2023;20(1):34-50. (In Russ.) https://doi.org/10.26518/2071-7296-2023-20-1-34-50

Views: 317


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-7296 (Print)
ISSN 2658-5626 (Online)