Preview

The Russian Automobile and Highway Industry Journal

Advanced search

Structural layout and operating parameters for a large rotor of a direct-flow bucket wheel type aggregator

https://doi.org/10.26518/2071-7296-2022-19-6-800-813

Abstract

Introduction. The problem of accelerating and cheapening the construction of roads without reducing their quality can be solved by creating a complex of continuous units. Units, following each other, carry out the whole complex of works aimed at the construction of roads. The use of satellite navigation opens up broad prospects for full automation of units. Therefore, the overall goal is to create a complex of units that carry out the continuous construction of roads, mainly in automatic mode. One of the devices that make up the continuous units is a direct-flow bucket wheel type aggregator. The use of direct-flow bucket wheel type aggregators for soil development is constrained by insufficient theoretical substantiation of their parameters. Before analyzing the interaction of the elements of the working bodies of a direct-flow bucket wheel type aggregator with the soil, it is necessary to clarify the structural layout for the rotor of a direct-flow bucket wheel type aggregator.

The method of research. Some design parameters of a direct-flow bucket wheel type aggregator are derived from logical reasoning. Other parameters of the direct-flow bucket wheel type aggregator are obtained by constructing schemes for the impact of the knife on the ground in the plane and spatial modelling. Initially, the rotor of a direct-flow bucket wheel type aggregator with a diameter of one meter was adopted for calculation.

Results. The circular and end knives are assigned the numbers № 1, № 2, № 3, etc. as it approaches from the periphery of the rotor to the axis of its rotation. On the basis of the adopted methodology, the design of the knife attachment, the front and back corner of the circular and end knives have been clarified. An extremely small distance from the axis of rotation of the rotor to the nearest point of the knife is established. Hence the conclusion is made that in addition to a large rotor, in conjunction with it, it is necessary to install a small rotor. The circumferential velocity of the blade of no. 1 circumferential knife and the angular velocity of the large rotor are determined. It is customary to arrange the knives in three rows, that is, the rows of knives around the circumference are deployed at an angle of 120° relative to each other. The feed on the end knife was revealed, that is, the thickness of the layer cut by the end knife.

Conclusion. On the basis of the adopted methodology, the geometric and mode parameters of a large rotor of a direct-flow bucket wheel type aggregator have been determined. An extremely small radius of location of the circular and end knives of the large rotor is established. To excavate the soil near the axis of rotation for the rotor of the direct-flow bucket wheel type aggregator, a small rotor with a higher angular velocity shall be coaxially installed. The direction of rotation of the small rotor shall be opposite to the direction of rotation of the large rotor in order to partially compensate for the reactive moment produced by the large rotor.

About the Author

V. A. Nikolayev
Yaroslavl Technical University
Russian Federation

 

Yaroslavl



References

1. Nikolayev V. A. Determination of the energy required to expose the surface of the knife and the bottom of the bulldozer blade to the ground at the beginning of the pass. The Russian Automobile and Highway Industry Journal. 2022; 19 (4): 484-499. https://doi.org/10.26518/2071-7296-2022-19-4-484-499

2. Zykov B. I. Teorija rabochih processov stroitel’nyh mashin [Workflow theory of construction machinery]. Ja-roslavl’: Izd. JaGTU, 2003. 114 p. (in Russ.)

3. Popov G. F. Rabochie organy frez [Working bodies of the cutters]. Moscow: Materialy NTS VISHOM. Vyp. 27. ONTI VISHOM, 1970: 490-4977. (in Russ)

4. Karasjov G. N. Opredelenie sily rezanija grunta s uchjotom uprugih deformacij pri razrushenii [Definition of the cutting force of soil considering elastic deformation at fracture]. Stroitel’nye i dorozhnye mashiny. 2008; 4: 36-42. (in Russ)

5. Karnauhov A. I., Orlovskij S. N. Opredelenie zatrat udel’noj jenergii na process rezanija lesnyh pochv torcevymi frezami [Costing of specific energy on the cutting process of forest soils end mills]. Stroitel’nye i dorozhnye mashiny. 2010; 1: 20-22. (in Russ)

6. Kravec I. M. Opredelenie kriticheskoj glubiny rezanija pri kombinirovannom rezanii gruntov gidrofrezoj [Determine critical cutting depth when combined cutting soils gidrofrezoj]. Stroitel’nye i dorozhnye mashiny. 2010; 5: 47-49. (in Russ)

7. Kirillov F. F. Determinirovannaja matematicheskaja model’ vremennogo raspredelenija tjagovogo usilija dlja mnogorezcovyh rabochih organov zemlerojnyh mashin [Deterministic mathematical model of the temporal distribution of traction for mnogorezcovyh working bodies of earthmoving machines]. Stroitel’nye i dorozhnye mashiny. 2010; 11: 44-48. (in Russ)

8. Berestov E. I. Vlijanie trenija grunta po poverhnosti nozha na soprotivlenie rezaniju [Influence of friction of soil on the surface of the knife cutting resistance]. Stroitel’nye i dorozhnye mashiny. 2010; 11: 34-38. (in Russ)

9. Balovnev V. I., Nguen Z. Sh. Opredelenie soprotivlenij pri razrabotke gruntov ryhlitelem po integral’nomu pokazatelju prochnosti [Identification of resistances when designing primers Ripper by a combined indicator of strength]. Stroitel’nye i dorozhnye mashiny. 2005; 3: 38-40. (in Russ)

10. Ryabets N., Kurzhner F. Weakening of frozen soils by means of ultra-high frequency energy. Cold Regions Science and Technology. 2003. Vol. 36. P. 115-128.

11. Liu X., Liu P. Experimental research on the compressive fracture toughness of wing fracture of frozen soil. Cold Regions Science and Technology. 2011. Vol. 65. P. 421-428.

12. Talalay P.G. Subglacial till and Bedrock drilling. Cold Regions Science and Technology. 2013. Vol. 86. P. 142-166.

13. Li Q. Development of Frozen Soil Model. // Advances in Earth Science. 2006. №12. P. 96-103.

14. Atkinson J. The Mechanics of Soils and Foundations. CRC. Press. 2007. 448 p.

15. Balovnev V. I., Danilov R. G., Ulitich O. Ju. Issledovanie upravljaemyh nozhevyh sistem zemlerojno- transportnyh mashin [Study of guided knife systems of ground-moving vehicles]. Stroitel’nye i dorozhnye mashiny. 2017; 2: 12-15. (in Russ.)

16. Nilov V. A., Fjodorov E. V. Razrabotka grunta skreperom v uslovijah svobodnogo rezanija [Ground development with a scraper in free cutting conditions]. Stroitel’nye i dorozhnye mashiny. 2016; 2: 7-10. (in Russ.)

17. Chmil’ V. P. Nasosno-akkumuljativnyj privod ryhlitelja s avtomaticheskim vyborom ugla rezanija [Pump-accumulating ripper drive with automatic cutting angle selection]. Stroitel’nye i dorozhnye mashiny. 2016; 11: 18-20. (in Russ.)

18. Kabashev R. A., Turgumbaev S. D. Jeksperimental’nye issledovanija processa kopanija gruntov rotorno-diskovymi rabochimi organami pod gidrostaticheskim davleniem [Experimental studies of the process of digging soils by rotary-disk working organs under hydrostatic pressure]. Vestnik SibADI. 2016; 4: 23-28. (in Russ.)

19. Sjomkin D.S. O vlijanii skorosti rabochego organa na silu soprotivlenija rezaniju grunta [On the impact of the speed of the working body on the force of resistance to ground cutting]. Vestnik SibADI. 2017; 1: 37-43. (in Russ.)

20. Konstantinov Ju. V. Metodika raschjota soprotivlenija i momenta soprotivlenija rezaniju pochvy prjamym plastinchatym nozhom frezy [The method of calculating resistance and the moment of resistance to soil cutting with a straight plate cutter knife]. Traktory i sel’hozmashiny. 2019; 5: 31-39. (in Russ.)

21. Syromjatnikov Ju. N., Hramov I. S., Vojnash S. A. Gibkij jelement v sostave rabochih organov rotornoj pochvoobrabatyvajushhej ryhlitel’no-separirujushhej mashiny [Flexible element in the working organs of the rotary soil processing loosening and separating machine]. Traktory i sel’hozmashiny. 2018; 5: 32-39. (in Russ.)

22. Parhomenko G. G., Parhomenko S. G. Silovoj analiz mehanizmov peremeshhenija rabochih organov pochvoobrabatyvajushhih mashin po zadannoj traektorii [Power analysis of the mechanisms of movement of working bodies of soil processing machines on a given trajectory]. Traktory i sel’hozmashiny. 2018; 1: 47-54. (in Russ.)

23. Dranjaev S. B., Chatkin M. N., Korjavin S. M. Modelirovanie raboty vintovogo G-obraznogo nozha pochvoobrabatyvajushhej frezy [Simulation of the work of a screw G-shaped knife soil cutter]. Traktory i sel’hozmashiny. 2017; 7: 13-19. (in Russ.)

24. Nikolaev V. A. Mashiny dlja obrabotki pochvy. Teorija i raschjot [Soil processing machines. Theory and calculation]. Jaroslavl’: Izd-vo FGBOU VPO JaGSHA, 2014: 358. (in Russ.)

25. Nikolaev V. A. Rezanie grunta passivnymi rabochimi organami. Teorija i raschjot [Cutting the soil by passive working organs. Theory and Calculation]. Jaroslavl’: Izd-vo FGBOU VO JaGTU, 2022: 388. (in Russ.)


Review

For citations:


Nikolayev V.A. Structural layout and operating parameters for a large rotor of a direct-flow bucket wheel type aggregator. The Russian Automobile and Highway Industry Journal. 2022;19(6):800-813. (In Russ.) https://doi.org/10.26518/2071-7296-2022-19-6-800-813

Views: 367


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-7296 (Print)
ISSN 2658-5626 (Online)