Preview

The Russian Automobile and Highway Industry Journal

Advanced search

Determination of the energy required to expose the surface of the knife and the bottom of the bulldozer blade to the ground at the beginning of the pass

https://doi.org/10.26518/2071-7296-2022-19-4-484-499

Abstract

Introduction. The use of a complex of continuous units in the construction of roads will increase labour productivity, improve the quality of road construction. Therefore, the purpose of the design is to create a complex of units for the continuous construction of roads, mainly in automatic mode. In the first stage, a combination of theoretical calculations of the parameters of the continuous technology tools and design developments is the right way to achieve this goal. To remove stones, bushes, trees from the right-of-way of the future road, it is advisable to use units with bulldozer equipment. Although the theoretical foundations of soil development are considered in great detail, but based on them it is difficult to identify and compare the partial energy costs of the impact on the soil of the elements of technical means. Therefore, a detailed analysis of the interaction with the soil of the elements of various technical means, in particular, bulldozer equipment, is necessary. Before considering the primary pseudo-shift of the soil, it is necessary to calculate the effective forces and energy costs necessary for the impact of the surface of the knife and the lower part of the bulldozer blade on the ground.

The method of research. If the depth of the knife is small, the surface of the knife transports the soil upwards, carrying out: secondary displacement of the soil after the primary pseudo-shift; raising the soil to a height; overcoming the force of inertia of the developed soil; acceleration of the soil; overcoming the force of friction of the soil on the surface. A method for determining the energy costs required for the impact of the surface of the knife and the lower part of the bulldozer blade to the ground at the beginning of the passage, taking into account these components, has been developed.

Results. On the basis of the developed methodology, energy costs have been determined: for the displacement of the soil after the primary shift, raising the soil to a height, overcoming the inertial force of the developed soil, accelerating the soil, overcoming the friction force of the soil on the surface. The total energy costs, power, traction force are revealed, based on the initial conditions. The results of calculations of the energy costs required to move the surface of the knife and the lower part of the blade, during the cutting of the soil with different depths of the knife, are obtained. The parameter dependencies on the depth of the knife of the bulldozer equipment are constructed.

Conclusion. Analysing the drawings, it can be seen that the P-point of application of the concentrated normal reaction of the knife and the lower part of the blade, passing through O mass center of the displaced soil, with an increase in the depth of the bulldozer knife, shifts down, passing to the knife blade. So, when the knife is buried by more than 200 mm, P point of application of the concentrated normal reaction of the knife and the lower part of the blade is located outside the blade of the knife. During the operation of the bulldozer, this may not happen if the knife is deepened gradually. As the bulldozer knife is deepened, the total volumetric energy required to move the surface of the knife and the lower part of the blade at the beginning of the passage increases in the ground.

About the Author

V. A. Nikolayev
Yaroslavl Technical University
Russian Federation

Vladimir A. Nikolayev. Dr. of Sci., Professor of the Construction and Road Machinery Department

Yaroslavl

 

 



References

1. Zykov B. I. Teorija rabochih processov stroitel’nyh mashin [Workflow theory of construction machinery]. Jaroslavl’: Izd. JaGTU, 2003. 114 p. (in Russ.)

2. Zhuk A. F. Teoreticheskoe obosnovanie racional’noj tehnologicheskoj shemy i parametrov rotacionnogo pluga. Sbornik nauchnyh trudov «Teorija i raschjotpochvoobrabatyvajushhih mashin» [Theoretical substantiation of rational technological scheme and parameters of Rotary plow. Collection of scientific works «Theory and calculation of tillage machines»]. T 120. Moscow, «Mashinostroenie», 1989: 145-153. (in Russ)

3. Popov G. F. Rabochie organy frez [Working bodies of the cutters]. Moscow: Materialy NTS VISHOM. Vyp. 27. ONTI VISHOM, 1970: 490-497.

4. Karasjov G. N. Opredelenie sily rezanija grunta s uchjotom uprugih deformacij pri razrushenii [Definition of the cutting force of soil considering elastic deformation at fracture]. Stroitel’nye i dorozhnye mashiny. 2008; 4: 36-42. (in Russ)

5. Karnauhov A. I., Orlovskij S. N. Opredelenie zatrat udel’noj jenergii na process rezanija lesnyh pochv torcevymi frezami [Costing of specific energy on the cutting process of forest soils end mills]. Stroitel’nye i dorozhnye mashiny. 2010; 1: 20-22. (in Russ)

6. Kravec I. M. Opredelenie kriticheskoj glubiny rezanija pri kombinirovannom rezanii gruntov gidrofrezoj [Determine critical cutting depth when combined cutting soils gidrofrezoj]. Stroitel’nye i dorozhnye mashiny. 2010; 5: 47-49. (in Russ)

7. Kirillov F. F. Determinirovannaja matematicheskaja model’ vremennogo raspredelenija tjagovogo usilija dlja mnogorezcovyh rabochih organov zemlerojnyh mashin [Deterministic mathematical model of the temporal distribution of traction for mnogorezcovyh working bodies of earthmoving machines]. Stroitel’nye i dorozhnye mashiny. 2010; 11: 44-48. (in Russ)

8. Berestov E. I. Vlijanie trenija grunta po poverhnosti nozha na soprotivlenie rezaniju [Influence of friction of soil on the surface of the knife cutting resistance]. Stroitel’nye i dorozhnye mashiny. 2010; 11: 34-38. (in Russ)

9. Vershinin A. V., Zubov V. S., Tjul’nev A.M. Povyshenie jeffektivnosti diskofrezernyh rabochih mehanizmov dlja razrabotki mjorzlyh gruntov [Improving the efficiency of the working mechanisms for the development of diskofrezernyh mjorzlyh soil]. Stroitel’nye i dorozhnye mashiny. 2012; 8: 42-44. (in Russ)

10. Balovnev V. I., Nguen Z. Sh. Opredelenie soprotivlenij pri razrabotke gruntov ryhlitelem po integral’nomu pokazatelju prochnosti [Identification of resistances when designing primers Ripper by a combined indicator of strength]. Stroitel’nye i dorozhnye mashiny. 2005; 3: 38-40. (in Russ)

11. Ryabets N., Kurzhner F. Weakening of frozen soils by means of ultra-high frequency energy. Cold Regions Science and Technology. 2003; 36:115-128.

12. Liu X., Liu P. Experimental research on the compressive fracture toughness of wing fracture of frozen soil. Cold Regions Science and Technology. 2011; 65: 421-428.

13. Talalay P. G. Subglacial till and Bedrock drilling. Cold Regions Science and Technology. 2013; 86: 142-166.

14. Sun X. ACT-timely experimental study on meso-scopic damage development of frozen soil under triaxial shearing. Rock and Soil Mechanics. 2005; 8: 150-163.

15. Li Q. Development of Frozen Soil Model. Advances in Earth Science. 2006; 12: 96-103.

16. Atkinson J. The Mechanics of Soils and Foundations. CRC. Press. 2007: 448.

17. Balovnev V. I., Danilov R. G., Ulitich O. Ju. Issledovanie upravljaemyh nozhevyh sistem zemlerojno-transportnyh mashin [Study of guided knife systems of ground-moving vehicles]. Stroitel’nye i dorozhnye mashiny. 2017; 2: 12-15. (in Russ.)

18. Nilov V. A., Fjodorov E. V. Razrabotka grunta skreperom v uslovijah svobodnogo rezanija [Ground development with a scraper in free cutting conditions]. Stroitel’nye i dorozhnye mashiny. 2016; 2: 7-10. (in Russ.)

19. Chmil’ V. P. Nasosno-akkumuljativnyj privod ryhlitelja s avtomaticheskim vyborom ugla rezanija [Pump-accumulating ripper drive with automatic cutting angle selection]. Stroitel’nye i dorozhnye mashiny. 2016; 11: 18-20. (in Russ.)

20. Kabashev R. A., Turgumbaev S. D. Jeksperimental’nye issledovanija processa kopanija gruntov rotorno-diskovymi rabochimi organami pod gidrostaticheskim davleniem [Experimental studies of the process of digging soils by rotary-disk working organs under hydrostatic pressure]. Vestnik SibADI. 2016; 4: 23-28. (in Russ.)

21. Sjomkin D.S. O vlijanii skorosti rabochego organa na silu soprotivlenija rezaniju grunta [On the impact of the speed of the working body on the force of resistance to ground cutting]. Vestnik SibADI. 2017; 1: 37-43. (in Russ.)

22. Konstantinov Ju. V. Metodika raschjota soprotivlenija i momenta soprotivlenija rezaniju pochvy prjamym plastinchatym nozhom frezy [The method of calculating resistance and the moment of resistance to soil cutting with a straight plate cutter knife]. Traktory i sel’hozmashiny. 2019; 5: 31-39. (in Russ.)

23. Syromjatnikov Ju. N., Hramov I. S., Vojnash S. A. Gibkij jelement v sostave rabochih organov rotornoj pochvoobrabatyvajushhej ryhlitel’no-separirujushhej mashiny [Flexible element in the working organs of the rotary soil processing loosening and separating machine]. Traktory i sel’hozmashiny. 2018; 5: 32-39. (in Russ.)

24. Parhomenko G. G., Parhomenko S. G. Silovoj analiz mehanizmov peremeshhenija rabochih organov pochvoobrabatyvajushhih mashin po zadannoj traektorii [Power analysis of the mechanisms of movement of working bodies of soil processing machines on a given trajectory]. Traktory i sel’hozmashiny. 2018; 1: 47-54. (in Russ.)

25. Dranjaev S. B., Chatkin M. N., Korjavin S. M. Modelirovanie raboty vintovogo G-obraznogo nozha pochvoobrabatyvajushhej frezy [Simulation of the work of a screw G-shaped knife soil cutter]. Traktory i sel’hozmashiny. 2017; 7: 13-19. (in Russ.)

26. Nikolaev V. A. Mashiny dlja obrabotki pochvy. Teorija i raschjot [Soil processing machines. Theory and calculation]. Jaroslavl’: Izd-vo FGBOU VPO JaGSHA, 2014: 358. (in Russ.)

27. Nikolaev V. A. Rezanie grunta passivnymi rabochimi organami. Teorija i raschjot [Cutting the soil by passive working organs. Theory and Calculation]. Jaroslavl’: Izd-vo FGBOU VO JaGTU, 2022: 388. (in Russ.)


Review

For citations:


Nikolayev V.A. Determination of the energy required to expose the surface of the knife and the bottom of the bulldozer blade to the ground at the beginning of the pass. The Russian Automobile and Highway Industry Journal. 2022;19(4):484-499. (In Russ.) https://doi.org/10.26518/2071-7296-2022-19-4-484-499

Views: 480


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-7296 (Print)
ISSN 2658-5626 (Online)