Preview

The Russian Automobile and Highway Industry Journal

Advanced search

On influence of structural features on stress-strain state of a reinforced concrete floor slab

https://doi.org/10.26518/2071-7296-2022-19-3-446-460

Abstract

Introduction. An assessment of the influence for the type of bonds and the magnitude of the prestress of the longitudinal working reinforcement on the stress-strain state of the reinforced concrete floor slab, developed by the authors was made.

Materials and methods. The studies on a finite element model of a reinforced concrete floor slab, implemented in LIRA software package were carried out.

Results. The development of stress values and transverse vertical displacements directly depended on the support conditions of the floor slab.

Limitation of transverse horizontal displacements on the support by any of the selected methods made it possible to reduce stresses by 3.47 - 3.78 times, deflections by 1.5 - 1.52 times, stresses - up to 11.9 times, wребро deflections - 1.18–1.53 times.

Creating an end rib or limiting movement with an additional horizontal connection had almost the same effect.

The transverse horizontal displacements of the lower face of the longitudinal contour rib in the direction of the 𝑢ребро span which occurred in the floor slab, which did not have an end rib and limitation of displacements in the transverse direction, were in a parabolic relationship with the magnitudes of the vertical transverse forces.

In a florr slab with limited displacements in the transverse direction or with an end rib, 𝑢ребро displacements were 3.88–4.32 times less, and at the ends they depended on the deformability of the bonds, i.e. when horizontal movement was prohibited, they were equal to zero.

stresses acting on the lower edge of the flange in the transverse direction, in the region of the middle of the span in the floor slab with reinforcement prestressed to the maximum value, had positive values almost over the entire width of the flange and directly depended on the thickness of the slab in each section.

Prestressing made it possible to reduce deflections by 4.02 - 4.37 times, wребро deflections by 1.09 - 5.59 times, and evenly distribute stresses along the length of the longitudinal contour rib, to make they are only tensile, close to zero along its entire length.

The prestressing of the reinforcement of the maximum value made it possible to increase the horizontal rigidity of the longitudinal contour rib of the floor slab and limit its transverse 𝑢ребро movements.

The transverse displacements that occurred near the support of the prestressed shell slab were 1.04 - 1.2 times less than in the shell slab with non-stressed reinforcement, on the rest of the span - slightly more, changing evenly, without sharp changes, unlike floor slabs with non-stressed reinforcement.

Discussion and conclusion. It is established that the optimal design of the floor slab under the study should have restrictions on the movements of the supports and the maximum possible prestressing of the longitudinal working reinforcement.

The practical significance of the study is that the specified reference conditions and prestress allow maximum deformation resistance of the structure, which in our case directly affects the bearing capacity of the slab.

About the Authors

A. V. Selivanov
Independent researcher
Russian Federation

Anton V. Selivanov – engineer

Omsk



F. F. Reger
ZAO PIRS
Russian Federation

Fedor F. Reger – Cand. of Sci.

Omsk



I. A. Chakurin
Siberian State Automobile and Highway University (SibADI)
Russian Federation

Ivan A. Chakurin – Cand. of Sci, Associate Professor, Building Structures Department

Omsk



References

1. Selivano A. V., Reger F. F. Results of experimental research of the reinforced concrete shellslab. The Russian Automobile and Highway Industry Journal. 2019;16(3):378-392. (In Russ.) https://doi.org/10.26518/2071-7296-2019-3-378-392

2. Borovskih A. V. Issledovanie naprjazhenno-deformirovannogo sostojanija zhelezobetonnyh plit-obolochek [Investigation of the stress-strain state of reinforced concrete shell plates]. Obzorno-analiticheskij i nauchno – tehnicheskij zhurnal Stroitel’naja mehanika inzhenernyh konstrukcij i sooruzhenij. Moskva, 2008. pp.82-86. (In Russ.)

3. Borovskih A. V. K voprosu o proektirovanii zhelezobetonnyh perekrytij zdanij [On the issue of designing reinforced concrete floors of buildings]. Stroitel’nye materialy, oborudovanie, tehnologii XXI veka. 2005; 12(83): 67-70. (In Russ.)

4. Bastatskij B. N., Barabadze N. G., Adamova M. G. O vybore formy poperechnogo sechenija vsparushennyh plit [On the choice of the shape of the cross-section of the broken plates]. Prostranstvennye konstrukcii zdanij i sooruzhenij. 1985; 5:128-133. (In Russ.)

5. Borovskih A. V., Shugaev V. V. Silovoe soprotivlenie perekrytij zdanij iz plit-obolochek [Force resistance of the floors of buildings made of shell plates]. Prostranstvennye konstrukcii zdanij i sooruzhenij. 2005:15-16. (In Russ.)

6. John F. Abel. The future of spatial structures // Fifty Years of Progress for Shell and Spatial Structures. Brentwood. UK: Multi Science Publishing Co Ltd., 2011. Pp. 485-490.

7. Fib Model Code for Concrete Structures 2010. Berlin: Ernst&Sohn, 2013. 402 p.

8. Skoruk L. Poisk jeffektivnyh raschetnyh modelej rebristyh zhelezobetonnyh plit perekrytij [Search for effective computational models of ribbed reinforced concrete floor slabs]. CADmaster. 2004; 3: 78-83. (In Russ.)

9. Kodysh Je. N., Trekin N. N., Vavilov O. V., Kolojdenko S. V. Plity perekrytij 2T dlja tehnologii nepreryvnogo formovanija [2T floor slabs for continuous molding technology]. Beton i zhelezobeton. 2001; 6: 5-8. (In Russ.)

10. Kopsha S. P., Zaikin V. A. Tehnologija bezopalubochnogo formovanija – kljuch k modernizacii promyshlennosti i snizheniju sebestoimosti zhil’ja [Technology of formless molding – the key to modernization of industry and reduction of housing costs]. Tehnologii betonov. 2013; 11: 29-33. (In Russ.)

11. Malyshev A. A. Sovremennye linii bezopalubochnogo formovanija [Modern lines of formless molding]. Beton i zhelezobeton. Oborudovanie. Materialy. Tehnologii. 2009; 1:20-23. (In Russ.)

12. Loshhenko A. L., Kopsha S. P., Bikbau M. Ja. Stroitel’no-industrial’nyj klaster – peredovye tehnolog ii i mashinostroenie dlja stroitel’stva [Construction and industrial cluster - advanced technologies and mechanical engineering for construction]. Tehnologii betonov. 2013; 8: 28-30. (In Russ.)

13. Bikbau M. Ja. Arhitekturno-stroitel’naja sistema IMJeT – novaja tehnologicheskaja osnova domostroenija [Architectural and construction system IMET - a new technological basis of house construction]. ZhBI i konstrukcii. 2012; 2: 64-71. (In Russ.)

14. Bikbau M. Ja., Blinov V. P. Dom rossijanina dolzhen byt’ krepost’ju [The house of a Russian should be a fortress]. ZhBI i konstrukcii. 2012; 3:64-70. (In Russ.)

15. Bikbau M. Ja. Novye cementy i betony. Otkrytie javlenija nanokapsuljacii dispersnyh veshhestv [Discovery of the phenomenon of nanocapsulation of dispersed substances]. ZhBI i konstrukcii. 2012; 4:67-72. (In Russ.)

16. Baranova T. I., Sil’vanovich T. G., Viktorov V. G., Bormotov A. N. Pustotnaja panel’ pokrytij proizvodstvennyh zdanij [Hollow panel of coatings of industrial buildings]. Izvestija vuzov. Stroitel’stvo. 1995; 11: 3–6. (In Russ.)

17. Baranova T. I., Sil’vanovich T. G., Bormotov A. N. Oblegchennaja pustotnaja panel’ pokrytija [Lightweight hollow coating panel]. Inzhenernye problemy sovremennogo zhelezobetona. Ivanovo. 1995: 42-47. (In Russ.)

18. Baranova T. I., Sil’vanovich T. G., Bormotov A. N., Selivanov M. Ju. Realizacija konstrukcionno-tehnologicheskih osobennostej zhelezobetona pri razrabotke novyh tipov panelej perekrytij [Implementation of structural and technological features of reinforced concrete in the development of new types of floor panels]. Izvestija vuzov. Stroitel’stvo. 1997; 4: 7–9. (In Russ.)

19. Fardiev R. F., Ashrapov A. H., Mustafin A. I. Issledovanie nesushhej sposobnosti pustotnyh plit perekrytija pri snizhennoj velichine opiranija na rigeli [Investigation of the bearing capacity of hollow floor slabs with a reduced amount of support on the crossbars]. Izvestija KGASU. 2014; 4 (30): 172-177. (In Russ.)

20. Bosakov B. V., Belevich V. N., Shhet’ko N. S., Rajchev V. P. Raschet i jeksperimental’naja ocenka prochnosti mnogopustotnyh plit bezopalubochnogo formovanija s uchetom trebovanij EN [Calculation and experimental evaluation of the strength of hollow plates of formwork molding taking into account the requirements of EN]. Stroitel’naja nauka i tehnika. 2010; 6 (33): 47-54. (In Russ.)

21. Bosakov B. V., Belevich V. N., Shhet’ko N. S. Teoreticheskie issledovanija po opredeleniju polozhenija naklonnoj treshhiny v priopornoj zone prednaprjazhennyh plit bezopalubochnogo formovanija [Theoretical studies on determining the position of an inclined crack in the support zone of prestressed slabs of formwork molding]. Vestnik Belorussko-Rossijskogo universiteta. 2011; 2 (31):127-133. (In Russ.)

22. Bosakov B. V., Belevich V. N., Shhet’ko N. S. Opredelenie velichiny vtjagivanija kanatov v izgibaemyh prednaprjazhennyh zhelezobetonnyh plitah bezopalubochnogo formovanija [Determination of the amount of rope retraction in bent prestressed reinforced concrete slabs without formwork molding]. Vestnik Brestskogo gosudarstvennogo tehnicheskogo universiteta. Stroitel’stvoiarhitektura. 2010; (61): 46-50. (In Russ.)


Review

For citations:


Selivanov A.V., Reger F.F., Chakurin I.A. On influence of structural features on stress-strain state of a reinforced concrete floor slab. The Russian Automobile and Highway Industry Journal. 2022;19(3):446-460. (In Russ.) https://doi.org/10.26518/2071-7296-2022-19-3-446-460

Views: 473


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-7296 (Print)
ISSN 2658-5626 (Online)