Preview

The Russian Automobile and Highway Industry Journal

Advanced search

Influence of fiber type and matrix composition on adhesive strength in fiber reinforced concrete

https://doi.org/10.26518/2071-7296-2022-19-3-436-445

Abstract

Introduction. The purpose of the article is to determine the influence of the steel fiber profile and the composition of the matrix on their adhesion in dispersed reinforced concrete.
Materials and methods. Studies have been carried out using the test methods set out in national standards. To determine the characteristics of the adhesion strength of fibers with a matrix, an original technique developed at SPbGASU was used.
Results. The degree of influence of the geometric shape of steel fibers – anchor and wave profile on the adhesion strength characteristic is determined. The adhesion strength of steel fiber with cement and concrete matrix was assessed (Cement: Sand = 1:1, Cement: Sand = 1:2 and Cement: Sand = 1:3). The influence of the volume fraction of the cement paste on the characteristic of the adhesion strength of the steel fiber with the matrix has been experimentally proven.
Conclusions. The experimental data obtained confirm the effectiveness of dispersed reinforcement through the use of anchor fibers in combination with a rationally selected composition of the concrete matrix.

About the Authors

Yu. V. Pukharenko
Research Institute of Building Physics of the Russian Academy of Architecture and Building Sciences (NIISF RAASN); Saint Petersburg State University of Architecture and Civil Engineering (SPbGASU)
Russian Federation

Yury V. Pukharenko – Dr. of Sci., Professor, Head of the Building Materials Technology and Metrology Department, NIISF RAASN (Chief Researcher)

Moscow

St. Petersburg



D. A. Panteleev
Saint Petersburg State University of Architecture and Civil Engineering (SPbGASU)
Russian Federation

Dmitrii A. Panteleev – Cand. of Sci., Associate Professor of the Building Materials Technology and Metrology Department

St. Petersburg



M. I. Zhavoronkov
Saint Petersburg State University of Architecture and Civil Engineering (SPbGASU)
Russian Federation

Mikhail I. Zhavoronkov – Cand. of Sci., Associate Professor of the Building Materials Technology and Metrology Department

St. Petersburg



References

1. Puharenko Yu. V., Morozov V. I., Panteleev D. A., ZHavoronkov M. I. Opredelenie prochnosti scepleniya armiruyushchih volokon s matricej v fibrobetone [Determination of the adhesion strength of reinforcing fibers with a matrix in a fibrobeton]. Stroitel’nye materialy. 2020; 3: 39–43. (in Russ.)

2. Puharenko Yu. V., Panteleev D. A., Zhavoronkov M. I., Kostrikin M. P. Sovershenstvovanie metoda opredeleniya velichiny scepleniya armiruyushchih volokon s matricej v fibrobetone [mproving the Method of Determining the Adhesion of Reinforcing Fibers with a Matrix in Fibrobeton]. Fundamental’nye, poiskovye i prikladnye issledovaniya Rossijskoj akademii arhitektury i stroitel’nyh nauk po nauchnomu obespecheniyu razvitiya arhitektury, gradostroitel’stva i stroitel’noj otrasli Rossijskoj Federacii v 2020 godu: Sb. nauch. tr. RAASN. T. 2. Moscow, Izdatel’stvo ASV, 2021: 208– 216. (in Russ.)

3. Pukharenko Yu. V., Panteleev D. A., Zhavoronkov M. I., Kostrikin M. P., Said Mujtaba Eshanzada Modelling the behavior of fiber-reinforced concrete with low-modulus fibers under load. «MATEC Web of Conferences » 329, 04002 (2020), ICMTMTE 2020.

4. Puharenko Yu. V., Panteleev D. A., ZHavoronkov M. I. Sovershenstvovanie metodov opredeleniya silovyh i energeticheskih harakteristik treshchinostojkosti fibrobetona [Improvement of Methods for Determination of Strength and Energy Characteristics of Fiber Concrete Crack Resistance]. Vestnik MGSU. 2019; T. 14. Vyp. 3: 301–310. (in Russ.)

5. Duy N. Ph., Anh Vu.N., Hiep D.Vu., Anh N.M.T. Strength of concrete columns reinforced with glass fiber reinforced polymer. Magazine of Civil Engineering. 2021; 1 (101): 10108.

6. Saad M. M. G., Almsajdi S. A. A. S., Nankya H., Abdulwahed B. M. H. Steel and basalt fiber comparison in the flexural strength of conventional concrete. International Journal of Humanities and Natural Sciences. 2021; 2-1 (53): 69–73.

7. Shafei B., Kazemian M., Dopko M., Najimi M. State-of-the-art review of capabilities and limitations of polymer and glass fibers used for fiber-reinforced concrete. Materials. 2021; T. 14. № 2:1–45.

8. Korotkih D. N. Zakonomernosti razrusheniya struktury vysokoprochnyh cementnyh betonov na osnove analiza polnyh ravnovesnyh diagramm ih deformirovaniya (chast’ 1) [Patterns of destruction of the structure of high-strength cement concretes based on the analysis of complete equilibrium diagrams of their deformation (part 1)]. Vestnik VolgGASU. Seriya: Stroitel’stvo i arhitektura. 2012; Vyp. 26: 56–67. (in Russ.)

9. Korotkih D. N. Zakonomernosti razrusheniya struktury vysokoprochnyh cementnyh betonov na osnove analiza polnyh ravnovesnyh diagramm ih deformirovaniya (chast’ 2) [Patterns of destruction of the structure of high-strength cement concretes based on the analysis of complete equilibrium diagrams of their deformation (part 2)]. Vestnik VolgGASU. Seriya: Stroitel’stvo i arhitektura. 2012; 27: 54–62. (in Russ.)

10. Lesovik V. S., Fedyuk R. S. Kompozity novogo pokoleniya dlya special’nyh sooruzhenij [New generation composites for special structures]. Stroitel’nye materialy. 2021; 3: 9–17. (in Russ.)

11. Kostrikin M. P. Effektivnost’ dispersnogo poliarmirovaniya betona nizkomodul’nymi voloknami [Efficiency of dispersed polishing of concrete with low-modulus fibers]. Vestnik grazhdanskih inzhenerov. 2021; 2(85): 128–133. (in Russ.)

12. Hegaj A. O., Kirilin N. M., Hegaj T. S., Hegaj O. N. Eksperimental’nye issledovaniya deformativnyh svojstv stalefibrobetona povyshennyh klassov [Experimental studies of the deformative properties of elevated- grade steelefibrobeton]. Vestnik grazhdanskih inzhenerov. 2020; 6(83): 77–82. (in Russ.)

13. Storm J., Kaliske M., Pise M., Brands D., Schröder J. A comparative study of micro-mechanical models for fiber pullout behavior of reinforced high performance concrete. Engineering Fracture Mechanics. 2021; T. 243: 107506.

14. Xu M. Song S., Feng L., Zhou J., Li H., Li V.C. Development of basalt fiber engineered cementitious composites and its mechanical properties. Construction and Building Materials. 2021; T. 266:121173.

15. Holovata Z., Kirichenko D., Korneeva I., Neutov S., Vyhnanets M. Experimental studies of fiber-reinforced concrete under axial tension. Materials Science Forum. 2021; T. 1038: 323–329.

16. Mettyuz F. Rolings R. Kompozicionnie materiali. Mehanika i tehnologiya [Composites. Mechanics and technology]. Per. s angl. S.L. Bajenov. Moscow, Tehnosfera, 2004:408.

17. Puharenko Yu. V., Panteleev D. A., ZHavoronkov M. I. Opredelenie vklada fibry v formirovanie prochnosti stalefibrobetona [Determining the contribution of fiber to the formation of the strength of steel fiber concrete]. Vestnik grazhdanskih inzhenerov. 2017; 1(60):172–176. (in Russ.)


Review

For citations:


Pukharenko Yu.V., Panteleev D.A., Zhavoronkov M.I. Influence of fiber type and matrix composition on adhesive strength in fiber reinforced concrete. The Russian Automobile and Highway Industry Journal. 2022;19(3):436-445. (In Russ.) https://doi.org/10.26518/2071-7296-2022-19-3-436-445

Views: 568


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-7296 (Print)
ISSN 2658-5626 (Online)