Preview

The Russian Automobile and Highway Industry Journal

Advanced search

Replacement working body material as a way to increase reliability of road construction machines

https://doi.org/10.26518/2071-7296-2021-18-6-646-661

Abstract

Introduction. On the example of a motor grader knife, ways of increasing the reliability of road construction machines (RCM) operation are evaluated. For this purpose, the analysis of force effects nature on the working body of the RCM is carried out and its design features are highlighted (the presence of a welded joint). Based on the analysis, the range of characteristics necessary for making a decision on the possibility of replacement the material of the RCM working body is determined. Additionally, its thermocyclic treatment (TCT) is carried out. Experimental studies of the effect of this thermal impact type on the structure and properties of steels are described.
Materials and methods. With the help of metallographic analysis, the author investigates the influence of the number of thermal effects cycles on the grain size and the complex of various materials physical and mechanical characteristics of road construction machines working body at various stages of the thermocyclic treatment.
Results. It is determined that an increase in the level of the investigated steels physical and mechanical characteristics is possible through the use of TCT due to the obtaining of a fine-grained metal structure. The dependences of the main physical and mechanical characteristics of the investigated steels (ultimate strength and yield strength) on the number of thermal effects cycles are considered. Correlation relationships are selected to describe these dependencies. The relationship between the yield strength and ultimate strength of 09G2S and 30MnB5 steels and the grain size is considered. In addition, studies of the steels fatigue characteristics are carried out; data on determining the microhardness are presented for the welded joint. For various operating temperatures, fractographic studies are carried out on samples after cyclic loading.
Discussion and conclusion. Based on a comparative analysis of the complex of physical and mechanical characteristics, the author made a conclusion about the possibility of replacing steel 09G2S with steel 30MnB5.

About the Authors

A. P. Scherbakov
Federal State Budgetary Educational Institution of Higher Education Saint Petersburg State University of Architecture and Civil Engineering
Russian Federation

Alexander P. Scherbakov – postgraduate student; Senior Lecturer, the Forensics Department 

Scopus author ID 57212375284

Researcher ID AAP-8095-2020

Saint Petersburg



A. E. Pushkarev
Federal State Budgetary Educational Institution of Higher Education Saint Petersburg State University of Architecture and Civil Engineering
Russian Federation

Alexandr E. Pushkarev – Dr. of Sci. Ec., Professor of Technological Machines

Scopus Author ID8290951800

Researcher ID E-4532-2019 

Saint Petersburg



S. E. Maksimov
Federal State Budgetary Educational Institution of Higher Education Saint Petersburg State University of Architecture and Civil Engineering
Russian Federation

Sergey E. Maksimov – Dr. of Sci. Ec., Professor of Technological Machines 

Saint Petersburg 



References

1. Scherbakov A., Sklyarova A., Pushkarev A., Petrov A.: Destruction of Welded Metal Structures of Construction Machines Operated in Corrosive Environments. In: Smart Innovation, Systems and Technologies, 2022. 247: 557-573 (). https://doi.org/10.1007/978-981-16-3844-2_50.

2. Mukhametshina R.M. Otkazy dorozhno-stroitel’nyh mashin po parametram korrozii [Failures of road construction machines in terms of corrosion parameters]. Izvestiya KazGASU. – News of the University, 2013. 4 (26): 62–67.

3. Prokhorov V.Yu., Bykov V.V. Puti povysheniya dolgovechnosti i iznosostojkosti podshipnika skol’zheniya navesnogo tekhnologicheskogo oborudovaniya [Ways to increase the durability and wear resistance of the sliding bearing of mounted technological equipment]. NiKa, 2017, 1: 71–74.

4. Gustov Yu.I., Orekhov A.A. Issledovanie konstrukcionno-tekhnologicheskih i ekspluatacionnyh pokazatelej stroitel’noj tekhniki [Research of structural-technological and operational indicators of construction equipment]. Izvestiya KazGASU – News of the University, 2014, 4 (30): 19–24.

5. Mukhametshina R.M. Vliyanie klimaticheskih faktorov na svoistva materialov i nadejnost dorojno_stroitelnih mashin [Influence of climatic factors on the properties of materials and reliability of road construction machines]. Izvestiya KazGASU – News of the University, 2014, 4 (30): 102–108.

6. Zaitseva M.M., Megera G.I., Kasyanov D.N. Problema dolgovechnosti detalej gruzovyh avtomobilej [The problem of durability of truck parts]. IVD, 2017, 2 (45): 71–75.

7. Scherbakov A., Lukashuk E., Pushkarev A., Vinogradova T.: The Influence of Deformation and Thermal Effects on the Structure and Properties of the Metal of Welded Structure Elements of Lifting Cranes. In: Smart Innovation, Systems and Technologies, 2022. 247: 539-555. https://doi.org/10.1007/978-981-16-3844-2_49.

8. Gleiter H. Nanostructured materials: basid concepts and microstructure // Acta materialia. 2000. 48(1): 29

9. Valiev R.Z., Murashkin M.Yu., Semenova I.P. Grain boundaries and mechanical properties of ultrafine-grained metals // Metallurgical and Materials Transactions. 2010 41(4): 816.

10. Markushev M.V. K voprosu ob ehffektivnosti nekotorykh metodov intensivnoi plasticheskoi deformatsii, prednaznachennykh dlya polucheniya ob”emnykh nanostrukturnykh materialov. [On the issue of the efficiency of some severe plastic deformation methods intended for the production of bulk nanostructured materials]. Pis’ma o materialakh. 2011. 1: 36–42.

11. Utyashev F.Z. Nanostrukturirovanie metallicheskikh materialov metodami intensivnoi plasticheskoi deformatsii [Nanostructuring of metallic materials by methods of intensive plastic deformation]. Fizika i tekhnika vysokikh davlenii. 2010, 20(1): 7–25.

12. Scherbakov A., Babanina A., Solovyeva E., Aleksandrovskiy M.: Mechanisms of construction machines and selection of steels for the manufacture of welded metal structures. In: IOP Conference Series: Materials Science and Engineering, 1001, 012012 (2020). https://doi.org/10.1088/1757-899X/1001/1/012012.

13. Zajtsev A.I. Perspektivnye napravleniya razvitiya metallurgii i materialovedeniya stali [Promising areas of development of metallurgy and materials science of steel]. Chernaya metallurgiya. Byulleten’ nauchno-tekhnicheskoj i ekonomicheskoj informacii. – Journal of Iron and Steel. Bulletin of Scientific, Technical and Economic Information, 2019, 75(4): 417–426.

14. Scherbakov A., Babanina A., Solovyeva E., Aleksandrovskiy M.: Materials and Methods of Experimental Studies of Welded Metal Structures of Construction Machines. In: Lecture Notes in Civil Engineering, vol 130 LNCE: 572-586 (2021). https://doi.org/10.1007/978-981-33-6208-6_57.

15. Tikhonov A.S., Belov V.V., Leushin I.G., Eremenko V.I., Zabelin S.F. Termotsiklicheskaya obrabotka stalei, splavov i kompozitsionnykh materialov [Thermocyclic treatment of steels, alloys and composite materials]. Moskow, Nauka, 1984, 187.

16. Scherbakov A.P., Pushkarev A.E., Manvelova N.E. Rabochie mekhanizmy stroitel’nyh mashin i sposoby tekhnologicheskogo obespecheniya prochnosti svarnyh soedinenij iz vysokoprochnyh stalej [Working mechanisms of construction machines and methods of technological ensuring the strength of welded joints made of high-strength steels]. Nedvizhimost’: ekonomika, upravlenie – Real estate: Economics, management, 2020, 1: 63–68.

17. Scherbakov A.P. Vybor materiala i metoda povysheniya iznosostojkosti elementov stroitel’nyh mashin [Material and method selection for increasing the wear resistance of construction machines components] // The Russian Automobile and Highway Industry Journal. 2020. № 17 (4). https://doi.org/10.26518/2071-7296-2020-17-4-464-475.

18. Scherbakov A.P. Eksperimental’nye issledovaniya vliyaniya termicheskoj obrabotki na svojstva svarnyh soedinenij rabochih mekhanizmov dorozhno-stroitel’nyh mashin // The Russian Automobile and Highway Industry Journal. 2020;17(6):664-675. https://doi.org/10.26518/2071-7296-2020-17-6-665-675.

19. Gordienko V.E., Abrosimova A.A., Kuz’min O.V., Trunova E.V., Scherbakov A.P. Vliyanie termicheskoj i termociklicheskoj obrabotki na mekhanicheskie svojstva konstrukcionnyh stalej [Influence of thermal and thermocyclic treatment on the mechanical properties of structural steels]. Vesnik grazhdanskikh inzhenerov – Bulletin of Civil Engineers, 2018, 1(66): 128–133.

20. Gordienko V.E., Abrosimova A.A., Trunova E.V., Korneeva E.A., Scherbakov A.P. Vliyanie strukturnyh parametrov konstrukcionnyh stalej na rezul’taty ocenki napryazhenno-deformirovannogo sostoyaniya svarnyh metallokonstrukcij [Influence of structural parameters of structural steels on the results of stress-strain state assessment of welded metal structures]. Vesnik grazhdanskikh inzhenerov – Bulletin of Civil Engineers, 2016, 6 (59): 194–199.

21. Morrison W. B. Superplasticity of low-alloy steels // ASM Transactions Quarterly, 1968, 61(3): 423–434.

22. Gordienko V.E., Abrosimova A.A., Trunova E.V. Vliyanie termociklicheskoj obrabotki na strukturnye izmeneniya plasticheski deformirovannyh svarnyh soedinenij metallicheskih konstrukcij stroitel’nyh mashin [Influence of thermocyclic treatment on structural changes of plastically deformed welded joints of metal structures of construction machines]. Vestnik grazhdanskikh inzhenerov – Bulletin of Civil Engineers, 2016, 2 (55): 174–180.

23. Polyansky, I. Sizov, U. Mishigdorzhiyn, V. Butukhanov. Improvement of the heat resistance of carbon steels by thermocycling thermochemical treatment with self-protective pastes based on boron carbide and aluminum // IOP Conf. Ser.: Mater. Sci. Eng. 2016, 116: 1–5.

24. Bublikov Yu.A. Osnovnie napravleniya povisheniya svoistv konstrukcionnih stalei ferrito_perlitnogo klassa [Main directions of improving the properties of structural steels of ferrite-perlite class]. VEZHPT, 2014,11 (72): 81–82.

25. Gordienko V.E., Abrosimova A.A., Trunova E.V., Scherbakov A.P. K vyboru konstrukcionnyh stalej dlya izgotovleniya svarnyh metallicheskih konstrukcij stroitel’nyh mashin [To the choice of structural steels for the manufacture of welded metal structures of construction machines]. Vesnik grazhdanskikh inzhenerov – Bulletin of Civil Engineers, 2017, 6 (65): 233–238.

26. Floreen S., Hayden H.W. The deformation and fracture of stainlees steels having microduplex structures (Deformation characteristics and fracture strength of Cr-Ni stainless steels with fine scale two phase ferrite plus austenite microstructures). ASM Transactions Quarterly, 1968, 61: 489–499.

27. Berezina A.A. Nekotorye osobennosti ocenki strukturnoj i mekhanicheskoj neodnorodnosti svarnyh soedinenij metallicheskih konstrukcij stroitel’nyh mashin [Some features of evaluation of structural and mechanical heterogeneity of welded joints of metal structures of construction machines]. Vesnik grazhdanskikh inzhenerov – Bulletin of Civil Engineers, 2015, 4 (51): 123–127.

28. Mylnikov V.V. Vliyanie chastoty nagruzheniya na ustalost’ konstrukcionnyh materialov [Influence of loading frequency on fatigue of structural materials]. Nauka i tekhnika – Science and Engineering, 2019, 5: 52–55.

29. Vedyakov I.I., Odesskij P.D., Gurov S.V. Obespechenie prochnosti svarnyh soedinenij dlya unikal’nyh konstrukcij iz prokata bol’shih tolshchin povyshennoj i vysokoj prochnosti [Ensuring the strength of welded joints for unique structures made of rolled products of large thicknesses increased and high strength]. Stroitel’naya mekhanika i raschet sooruzhenij – Construction mechanics and calculation of structures, 2018, 2 (277): 68–75.

30. Scherbakov, A., Babanina, A., Graboviy, K.: Acting Stresses in Structural Steels During Elastoplastic Deformation. In: Advances in Intelligent Systems and Computing, 2021. 1259: 298-311. https://doi.org/10.1007/978-3-030-57453-6_26.

31. Scherbakov, A., Babanina, A., Kochetkov, I., Khoroshilov, P.: Technical condition of welded load-bearing metal structures of operated agricultural hoisting cranes. In: E3S Web of Conferences, 2020. 175: 11005. https://doi.org/10.1051/e3sconf/202017511005.

32. Scherbakov, A., Babanina, A., Matusevich, A.: Passive Probe-Coil Magnetic Field Test of StressStrain State for Welded Joints. In: Advances in Intelligent Systems and Computing, 1259: 312-323 (2021). https://doi.org/10.1007/978-3-030-57453-6_27.

33. Scherbakov A., Monastyreva D., Smirnov V.: Passive fluxgate control of structural transformations in structural steels during thermal cycling. In: E3S Web of Conferences, 2019. 135: 03022. https://doi.org/10.1051/e3sconf/201913503022.

34. Scherbakov A.P., Pushkarev A.E., Vinogradova T.V. Influtnce analysis of 09Г2С and 30MnB5 steels thermo cyclic treatment on strength characteristics of road construction machines working bodies. The Russian Automobile and Highway Industry Journal. 2021;18(2):180-190. (In Russ.) https://doi.org/10.26518/2071-7296-2021-18-2-180-190.


Review

For citations:


Scherbakov A.P., Pushkarev A.E., Maksimov S.E. Replacement working body material as a way to increase reliability of road construction machines. The Russian Automobile and Highway Industry Journal. 2021;18(6):646-661. (In Russ.) https://doi.org/10.26518/2071-7296-2021-18-6-646-661

Views: 7686


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-7296 (Print)
ISSN 2658-5626 (Online)