Preview

The Russian Automobile and Highway Industry Journal

Advanced search

Influence of soil moisture on the deformation properties of soil-crushed stone samples during compression

https://doi.org/10.26518/2071-7296-2021-18-5-614-632

Abstract

Introduction. The purpose of the article is to determine the dependence of the influence of soil moisture and the content of crushed stone in a soil-crushed stone sample on the secant modulus of deformation under uniaxial compression. The need for such a mathematical model is necessary in order to introduce correction factors to the values of the stamped deformation moduli of the gravel layer calculated from test data delivered at other soil moisture conditions, e.g. for flume or road tests during a non-calculated period of the year.
Materials and methods. Cylindrical samples with a height of 20 cm and a diameter of 10 cm were made to perform tests using a large standard sealing device. The content of crushed stone of a mixture of fractions of 5-10 and 10-20 mm varied in the samples. The methods of saturation of samples with water and their testing by uniaxial compression are given. The rules for processing the experimental results are described, which include: correction of the initial part of the graphical dependence of deformation from pressure and statistical processing of the results. The analysis of methods for calculating the deformation modulus, which are classified into three types, is performed: secant module, tangent module and piecewise linear module. Based on this analysis, a method for calculating the deformation modulus of a soil-crushed stone sample under uniaxial compression is justified.
Results. The results of experimental determination of the deformation characteristics of soil-crushed stone samples under uniaxial compression are presented. A mathematical model of the dependence of the deformation modulus of a soil-crushed stone sample from the soil moisture and the content of crushed stone used in the soil-crushed stone mixture is obtained.
Discussion and conclusions. Recommendations are given on the application of the research results for the development of an album of standard constructions of road pavement of the lowest type in the districts of the Omsk region.

About the Authors

A. S. Prolygin
Siberian State Automobile and Highway University (SibADI)
Russian Federation

Aleksandr S. Prolygin, Postgraduate student of the Road Construction and Maintenance Department
Author ID: 57222243670

Omsk



G. V. Dolgikh
Siberian State Automobile and Highway University (SibADI)
Russian Federation

Gennadii V. Dolgikh, Cand. of Sci., Associate Professor, Head of the Road Construction and Maintenance Department

Author ID: 57199391542

Omsk



A. L. Kalinin
Siberian State Automobile and Highway University (SibADI)
Russian Federation

Aleksandr L. Kalinin, Senior teacher of the Road Construction and Maintenance Department

Omsk



N. P. Alexandrova
Siberian State Automobile and Highway University (SibADI)
Russian Federation

Natalia P. Alexandrova, Cand. of Sci., Associate Professor, Head of the Road Construction and Maintenance Department

Author ID: 57191525817

Omsk



References

1. Kettle R.J., McCabe E.Y. Mechanical Stabilization for the Control of Frost Heave. Canadian Journal of Civil Engineering, 2011. 12(4), p. 899-905. DOI:10.1139/l85-102.

2. Mahedi M., Cetin B., White D.J. (2021). Closure to “Cement, Lime, and Fly Ashes in Stabilizing Expansive Soils: Performance Evaluation and Comparison”. Journal of Materials in Civil Engineering Vol. 33(9):07021013. DOI:10.1061/(ASCE)MT.1943-5533.0003868.

3. Coban H.S., et al. (2022) Effects of Using Recycled Aggregates and Large Stones for Base and Subbase Layers on Modulus Properties of Pavements. In: Tutumluer E., Nazarian S., Al-Qadi I., Qamhia I.I. (eds) Advances in Transportation Geotechnics IV. Lecture Notes in Civil Engineering, Vol 164. Springer, Cham. DOI:10.1007/978-3-030-77230-7_28.

4. Han J., Leshchinsky D. Analysis of back-toback mechanically stabilized earth walls. Geotextiles and Geomembranes. 2010. Vol. 28(3). Pp. 262-267. DOI:10.1016/j.geotexmem.2009.09.012.

5. Tang X.C., Chehab G.R., Palomino A. Evaluation of geogrids for stabilizing weak pavement subgrade. International Journal of Pavement Engineering. 2008. Vol. 9(6). Pp. 413-429. DOI:10.1080/10298430802279827.

6. Lunyov A.A., Sirotyuk V.V. Primenenie zoloshlakovyh smesej dlya vertikal’nyh planirovok i stroitel’stva gorodskih dorog [The use of ash and slag mixtures for vertical planning and construction of urban roads] // Tekhnika i tekhnologii stroitel’stva, 2015, 1(1): 24-31. (in Russian)

7. Lunyov A.A., Sirotyuk V.V., Barac N.I. Eksperimental’nye issledovaniya prochnostnyh harakteristik zoloshlakovoj smesi The Russian Automobile and Highway Industry Journal, 2016, 52(6): 72-79. DOI:10.26518/2071-7296-2016-6(52)-72-79. (in Russian)

8. Lunyov A.A., Sirotyuk V.V., Ivanov E.V. Rezul’taty issledovanij deformacionnyh harakteristik zoloshlakovyh smesej // The Russian Automobile and Highway Industry Journal, 2017, 53(1): 103-110. DOI:10.26518/2071-7296-2017-1(53)-103-110. (in Russian)

9. Lunyov A.A., Sirotyuk V.V. Sopostavlenie deformacionnyh parametrov zoloshlakovoj smesi, poluchennyh v laboratornyh i naturnyh usloviyah // Vestnik Tomskogo gosudarstvenno-go arhitekturno- stroitel’nogo universiteta, 2019, 21(2): 215-227. DOI:10.31675/1607-1859-2019-21-2-215-227. (in Russian)

10. Sirotyuk, V.V., Lunev, A.A.: Strength and deformation characteristics of ash and slag mixture. Magazine of Civil Engineering. 2017. 74(6): 3–16. DOI:10.18720/MCE.74.1. (in Russian)

11. Lytkin A.A., Starkov G.B., Vagner E.YA. Issledovanie effektivnosti ispol’zovaniya belitovogo shlama dlya ustrojstva monolitnyh sloev dorozhnyh odezhd metodom holodnogo resajklinga [Investigation of the effectiveness of the use of whitewash sludge for the device of monolithic layers of road clothes by cold recycling] The Russian Automobile and Highway Industry Journal, 2020, 17(6): 764-776. DOI:/10.26518/2071-7296-2020-17-6-764-776. (in Russian)

12. Lytkin A.A. Vliyanie povtornogo uplotneniya i transportnyh nagruzok na harakter tverdeniya belitovogo shlama v sloyah dorozhnyh odezhd [The effect of re-compaction and transport loads on the character of hardening of whitewash sludge in layers of road clothes] The Russian Automobile and Highway Industry Journal, 2017, 55(3): 125-132. DOI:10.26518/2071-7296-2017-3(55)-125-132 (in Russian)

13. Lytkin, A.A.: Study of the Transport Loads Influence on the Nature of Belite Sludge Hardening in Pavement. Materials Science Forum 2020. 992, 79– 85. DOI:10.4028/www.scientific.net/MSF.992.79 (in Russian)

14. Schneider V.A., Levashov G.M., Sirotyuk V.V. The definition of strength required geosynthetics for erosion control nepotoplyaemyj protection slope subgrade. The Russian Automobile and Highway Industry Journal. 2016; 1(47)):72-80. (in Russian)

15. Matveev S.A., Litvinov N.N. Opredelenie deformacionnyh harakteristik shchebenochno-peschanogo osnovaniya, armirovannogo stal’noj geosetkoj The Russian Automobile and Highway Industry Journal, 2013, 32(4): 57-61. (in Russian)

16. Matveev S.A., Martynov E.A., Litvinov N.N. Eksperimental’no-teoreticheskie issledovaniya armirovannogo osnovaniya dorozhnoj odezhdy [Experimental and theoretical studies of reinforced pavement foundation] The Russian Automobile and Highway Industry Journal, 2015, 44(4): 80-86. DOI:10.26518/2071-7296-2015-4(44)-80-86(in Russian)

17. Matveev, S.A., et al: The geogrid-reinforced gravel base pavement model. Magazine of Civil Engineering. 2020. 94(2): 21–30. DOI: 10.18720/MCE.94.3

18. Matveev, S.A., Martynov, E.A., Litvinov, N.N.: Determine the reinforcement effect of gravel layer on Materials. 2014. 662:164-167. DOI:10.4028/www.scientific.net/AMM.662.164

19. Matveev, S.A., Martynov, E.A., Litvinov, N.N.: Effect of Reinforcing the Base of Pavement with Steel Geogrid Applied Mechanics and Materials. 2014. 587-589:1137-1140. DOI:10.4028/www.scientific.net/AMM.587-589.1137

20. Aleksandrov A.S., Dolgikh G.V., Kalinin A.L. Empirical conditions of plasticity in calculations of the subgrade by shift. Construction of Unique Buildings and Structures. 2019. 10(85): 7-20. DOI: 10.18720/CUBS.85.1(in Russian)

21. Kalinin A.L. Application of modified yield criteria for calculation of safe pressures on the subgrade soil. Magazine of Civil Engineering. 2013. 39(4): 35–45. (rus). DOI: 10.5862/MCE.39.4.

22. Kuzin N.V., Aleksandrov A.S. Ob izmenenii napryazheniya vertikal’nogo szhatiya v dorozhnyh konstrukciyah Izvestiya orlovskogo gosudarstvennogo tekhnicheskogo universiteta. seriya: stroitel’stvo i transport. 2007, 16(4): 221-225. (in Russian)

23. Lunev, A.A., Sirotyuk, V.V. Stress distribution in ash and slag mixtures. Magazine of Civil Engineering, 2019, 86(2): 72–82. DOI: 10.18720/MCE.86.7(in Russian)

24. Lunev, A.A., Sirotyuk, V.V. Prediction of the Stress State of Pond Ash Road Embankments. Soil Mechanics and Foundation Engineering, 2021. 58(1): 2–7. DOI:10.1007/s11204-021-09700-8(in Russian)

25. Dolgih G.V. Raschet gruntov zemlyanogo polotna po kriteriyu bezopasnyh davlenij The Russian Automobile and Highway Industry Journal. 2013. 34(6): 43-49. (in Russian)

26. Dolgih G.V. Opredelenie pervoj kriticheskoj nagruzki pri raschete gruntov zemlyanogo polotna po soprotivleniyu sdvigu // Vestnik Moskovskogo avtomobil’nodorozhnogo gosudarstvennogo tekhnicheskogo universiteta (MADI). 2016. 3 (46): 90-97. (in Russian)

27. Aleksandrova N.P., Semenova T.V., Dolgih G.V. Sovershenstvovanie modelej rascheta glavnyh napryazhenij i deviatora v grunte zemlyanogo polotna [Improvement of models for calculating the main stresses and the deviator in the ground of the roadbed]// The Russian Automobile and Highway Industry Journal. 2014. 2 (36): 49-54. (in Russian)

28. Aleksandrov A.S. Issledovanie plasticheskogo deformirovaniya diskretnyh materialov pri vozdejstvii ciklicheskih nagruzok i opredelenie parametrov matematicheskih modelej [Investigation of plastic deformation of discrete materials under the influence of cyclic loads and determination of parameters of mathematical models] Stroitel’nye materialy. 2016. 10: 27-32. (in Russian)

29. Gyulzadyan, H., Voskanyan, G., Ter-Simonyan, V.: Exploration Results of Applying Limestone Powder in Crushed-Stone-Sand Mixtures for Road Pavement Layers. Advanced Materials Research. 2014. 1020: 31–36. DOI:10.4028/www.scientific.net/AMR.1020.31

30. Ilina, O.N., Ilin, I.B. Road organo-mineral mixtures based on oil sludge. Magazine of Civil Engineering. 2019. 92(8): 115–126. DOI: 10.18720/MCE.92.10

31. Dolinsky, Y.A.,, Starkov, G.B.,, Matveev, S.A. Experience in Repairing Highways Using Cold Regeneration Technology in the Altai Republic. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 753, pp. 1-5. DOI:10.1088/1757-899X/753/3/032006

32. Rudgalskiy, D. et al. Strength indices of sand reinforced by foamed bitumen. Journal of Physics: Conference Series. 2020. 1614: 1-9. DOI:10.1088/1742-6596/1614/1/012004

33. Adeyanju, E.A., Okeke, C.A.: Clay soil stabilization using cement kiln dust. IOP Conference Series: Materials Science and Engineering. 2019. 640: 1-10. DOI:10.1088/1757-899X/640/1/012080

34. Cui, S.L., et al: Mechanical behavior and micro-structure of cement kiln dust-stabilized expensive soil. Arabian Journal of Geosciences. 2018. 11(17): 521. DOI:10.1007/s12517-018-3864-0

35. Oriola F.O.P., Moses G., Sani J.E.: Stabilization of lateritic soil with cement kiln dust for road pavement material based on defined curing temperature conditions. Indian Journal of Engineering. 2017.14(37): 215-226.

36. Ismaiel, H.A.H.: Cement Kiln Dust Chemical Stabilization of Expansive Soil Exposed at El-Kawther Quarter, Sohag Region, Egypt. International Journal of Geosciences. 2013. 4: 1416-1424. DOI:10.4236/ijg.2013.410139

37. Naeini, S.A, Naderinia, B., Izadi, E.: Unconfined compressive strength of clayey soils stabilized with waterborne polymer KSCE Journal of Civil Engineering. 2012. 16(6): 943–949. DOI:10.1007/s12205-012-1388-9

38. Satyanarayana Reddy C.N.V., Prasad, A.C.S.V.: Performance Studies on Cement Stabilized Gravelly Soil Exposed to Sulfate Environment. Indian Geotechnical Journal. 2014. 45(2): 217–224. DOI:10.1007/s40098-014-0127-1.

39. Thomas, A., Tripathi, R.K., Yadu, L.K.: A Laboratory Investigation of Soil Stabilization Using Enzyme and Alkali-Activated Ground Granulated Blast-Furnace Slag. Arabian Journal of Geosciences. 2018. 43: 5193–5202. DOI:10.1007/s13369-017-3033-x

40. Colt, O.E., Razval, C. Geosynthetic reinforcement for base / subbase courses of road structures. International Symposium: Highway and Bridge Engineering 2014, 1-7.

41. Dong, Y.L., Han, J., Bai X.H. Numerical analysis of tensile behavior of geogrids with rectangular and triangular apertures. Geotextiles and Geomembranes. 2011. 29(2): 83–91. DOI:10.1016/j.geotexmem. 2010.10.007

42. Giroud, J.P., Han, J. Design method for geogrid-reinforced unpaved roads: I. Development of design method. Journal of Geotechnical and Geoenvironmental Engineering. 2004. 130(8): 775-786. DOI:10.1061/(ASCE)1090-0241(2004)130:8(775)

43. Giroud, J.P., Han, J: Design method for geogrid-reinforced unpaved roads: II. Calibration and applications. Journal of Geotechnical and Geoenvironmental Engineering. 2004. 130 (8): 787-797. DOI:10.1061/(ASCE)1090-0241(2004)130:8(787)

44. Han, J., Leshchinsky, D: Analysis of backto-back mechanically stabilized earth walls. Geotextiles and Geomembranes 2010. 28(3): 262–267. DOI:10.1016/j.geotexmem.2009.09.012

45. Han, J., Jiang, Y. Use of geosynthetics for performance enhancement of earth structures in cold regions. Sciences in Cold and Arid Regions. 2013. 5(5): 517–529. DOI:10.3724/SP.J.1226.2013.00517

46. Han, J. et al. Performance of geocell-reinforced RAP bases over weak subgrade under fullscale moving wheel loads. Journal of Materials in Civil Engineering. 2011. 23(11): 1525–1534. (2011). DOI:10.1061/(ASCE)MT.1943-5533.0000286

47. Chen, X., Chen, L., Zhang, J. Permanent Deformation Behavior of Coarse-Grained Residual Subsoil Under Large Amplitude Loading Cycles. In: Tutumluer E., Chen X., Xiao Y. (eds) Advances in Environmental Vibration and Transportation Geodynamics. Lecture Notes in Civil Engineering. 2020. 66. DOI: 10.1007/978-981-15-2349-6_16

48. Rahman, M.S., Erlingsson, S.: Predicting permanent deformation ehavior of unbound granular materials. International Journal of Pavement Engineering. 2015. 16(7): 587–601. DOI:10.1080/10298436.2014.943209

49. Salour, F., Erlingsson, S.: Permanent deformation characteristics of silty sand subgrades from multistage RLT tests. International Journal of Pavement Engineering. 2017. 18(3): 236-246. DOI:10.1080/10298436.2015.1065991

50. Salour, F., Erlingsson, S. Characterisation of Permanent Deformation of Silty Sand Subgrades from Multistage RLT Tests. In: 3rd International Conference on Transportation Geotechnics (ICTG 2016), Procedia Engineering. 2016. 143: 300–307. DOI:10.1016/j.proeng.2016.06.038

51. Karaulov, A.M., Korolev, K.V. A Static Solution for the Problem of the Stability of a Smooth Freestanding Sheet Pile Wall. Soil Mechanics and Foundation Engineering. 2017. 54(4): 211–215. DOI:10.1007/s11204-017-9460-6

52. Karaulov, A.M., Korolev, K.V.: On the determination of the maximum earth pressure on retaining walls Soil Mechanics and Foundation Engineering. 2015. 52(4):175–180. DOI:10.1007/s11204-015-9325-9

53. Dawson, A., Kolisoja, P., Vuorimies, N.: Understanding Low-Volume Pavement Response to Heavy Traffic Loading. RoadexIII Northern Periphery. 2008.

54. Dawson, A.R., et al: Design of low-volume pavements against rutting – a simplified approach. Transportation Research Record: Journal of the Transportation Research Board. 2007. 1989(1): 165–172. DOI:10.3141/1989-19

55. Chandak P.G., et al: Performance Evaluation of Low Volume Rural Roads- A State-of-the-Art Review. In: Frikha W., Kawamura S., Liao WC. (eds) New Developments in Soil Characterization and Soil Stability. GeoChina 2018. Sustainable Civil Infrastructures. Springer, Cham. 43–57 (2019). DOI:10.1007/978-3-319-95756-2_5

56. Aleksandrov A.S., Semenova T.V., Aleksandrova N.P. Metod rascheta ostatochnyh deformacij, primenyaemyh v osnovaniyah dorozhnyh odezhd // The Russian Automobile and Highway Industry Journal , 2019, 68(4): 456-471. DOI:10.26518/2071-7296-2019-4-456-471. (in Russian)

57. Aleksandrov A.S., Semenova T.V., Kalinin A.L. Analiz prichin koleeobrazovaniya na pokrytiyah nezhestkih dorozhnyh odezhd i rekomendacii po umen’sheniyu etogo yavleniya // The Russian Automobile and Highway Industry Journal, 2019, 70(6): 718-745. (in Russian)


Review

For citations:


Prolygin A.S., Dolgikh G.V., Kalinin A.L., Alexandrova N.P. Influence of soil moisture on the deformation properties of soil-crushed stone samples during compression. The Russian Automobile and Highway Industry Journal. 2021;18(5):614-632. (In Russ.) https://doi.org/10.26518/2071-7296-2021-18-5-614-632

Views: 494


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-7296 (Print)
ISSN 2658-5626 (Online)