Preview

The Russian Automobile and Highway Industry Journal

Advanced search

Vehicle speed influence on exhaust system surface temperature

https://doi.org/10.26518/2071-7296-2021-18-2-192-202

Abstract

Introduction. The reasons for the formation of an increased amount of condensate in the exhaust system of a car at a low ambient temperature are considered. Since the speed of the vehicle is one of the factors that determine the heating of the exhaust system and the formation of condensation, an experimental study was carried out to determine the temperature of the elements of the exhaust system at various vehicle speeds.

The purpose of this study: to establish the features of the temperature change of individual elements of the exhaust system, depending on time at different vehicle speeds

Materials and methods. The sequence of the experimental study consisted of starting the “cold” engine, accelerating the car and then moving the car at a constant speed for 20 minutes. Simultaneously with the start of the engine, the temperature of the elements of the exhaust system was recorded. In this study, thermocouples were used to measure the surface temperature of the exhaust system. Experimental studies were carried out on a Toyota Camry with a gasoline engine in the climatic conditions of the Perm Territory.

Results. The dependences of the temperature of the exhaust system elements on time were obtained at different speeds. In an experimental study, it was found that the temperature of the elements of the exhaust system is established within 8-12 minutes from the start of the vehicle at a constant speed; the rear muffler has the least surface heating, and therefore the greatest probability of the formation and accumulation of condensate.

Discussion and conclusion. The analysis of the peculiarities of the change in the temperature of the exhaust system during the movement of the vehicle in conditions of low ambient temperature is carried out. The established patterns can be used to obtain information on the processes of condensate accumulation in the exhaust system and are aimed at predicting the amount of condensate accumulation in the exhaust system; to develop new solutions to ensure reliable operation of the exhaust system.

About the Authors

M. G. Boiarshinov
Perm National Research Polytechnic University
Russian Federation

Mikhail G. Boiarshinov - Dr. of Sci., Professor, Head of the Cars and Technological Machines Department.

614990, Perm Territory, Perm, Komsomolsky Prospekt, 29



N. I. Kuznetsov
Perm National Research Polytechnic University
Russian Federation

Nikita I. Kuznetsov - Postgraduate Student, the Automobiles and Technological Machines Department.

614990, Perm Territory, Perm, Komsomolsky Prospekt, 29



References

1. Hashimoto R., Mori G., Yasir M., Tröger U., Wieser H. Impact of Condensates Containing Chloride and Sulphate on the Corrosion in Automotive Exhaust Systems. BHM Berg- und Hüttenmännische Monatshefte, September 2013, 158 (9): 377–383. DOI: https://link.springer.com/article/10.1007/s00501-013-0180-6.

2. González N. G. Condensation in Exhaust Gas Coolers. Energy and Thermal Management, Air Conditioning, Waste Heat Recovery. ETA 2016. Springer, Cham. 2017. DOI: https://doi.org/10.1007/978-3-319-47196-9_9.

3. Laushkin A.V., Haziev A.A. Prichiny obvodnenija motornogo masla v jekspluatacii [Reasons for flooding engine oil in operation] Vestnik MADI, 2012, 1: 63−67. (in Russian)

4. Gümpel, P., Schiller, D., Arlt, N. et al. Simulation of corrosion behaviour of stainless steels in passenger car exhaust systems. ATZ Worldw 106, 2004: 18–20 DOI: https://doi.org/10.1007/BF03224662

5. Laushkin A. V., Haziev A. A. Analiz faktorov, vlijajushhih na obvodnenie motornogo masla pri jekspluatacii avtomobilja [Analysis of factors affecting the flooding of motor oil during car operation] Avtotransportnoe predprijatie. 2016; 4: 54-56. (in Russian)

6. Heil B., Enderle C., Herwig H., Strohmer E., Margadant A., Ruth W. The Exhaust System of the Mercedes SL500. MTZ worldwide. 2002. 63(1): 2-5. https://doi.org/10.1007/BF03227514

7. Krüger, J., Pommerer, M. & Jebasinski, R. Active exhaust silencers. MTZ Worldw 71, 2010: 4–9. DOI: https://doi.org/10.1007/BF03227026

8. Kuznetsov N.I., Petukhov M.Yu., Khaziev A. A., Laushkin A. V. Problem of Accumulation and Freezing of Condensate in the Exhaust Gases of Cars at Low Temperatures, Applied Mechanics and Materials. June 2016; 838:47–55. DOI: https://doi.org/10.4028/www.scientific.net/AMM.838.47.

9. Kim, M.J., Woo, S.H., Kim, J.G. et al. Effect of Weld Oxide on the Corrosion Resistance of Gas Metal Arc Welded Ferritic Stainless Steel Exposed to Simulated Exhaust Condensate. Oxid Met 84, 2015. pp. 397–411 DOI: https://doi.org/10.1007/s11085-015-9561-4

10. Morgan, M.L. Failure Analysis of an 18% Cr Ferritic Stainless Steel in a Simulated Exhaust Condensate Containing Urea. J Fail. Anal. and Preven. 18, 2018: 117–120 DOI: https://doi.org/10.1007/s11668-018-0387-7

11. Curà F., Mura A. Aging characterization of metals for exhaust systems. International Journal of Automotive Technology. June 2012. 13(4): 629–636. DOI: https://doi.org/10.1007/s12239-012-0061-0

12. Abdoli M., Rahimi H. & Godarzizadeh A. Investigation of Failure in Automotive Exhausts. J Fail. Anal. and Preven. 2011. 11: 679. DOI: https://doi.org/10.1007/s11668-011-9502-8

13. Kuznecov N.I. Kolichestvennaya ocenka soderzhaniya v otrabotavshih gazah vody, postupayushchej v dvigatel’ s atmosfernym vozduhom [Quantification of the content in the exhaust gas of water entering the engine with atmospheric air] Vestnik PNIPU. Transport. Transportnye sooruzheniya. Ekologiya. 2017; 1: 77-87. DOI: 10.15593/24111678/2017.01.06

14. Laushkin A. V., Haziev A. A. Kolichestvennaja ocenka obrazovanija vody pri sgoranii avtomobil’nogo topliva [Quantification of the formation of water during the combustion of automotive fuel] Avtotransportnoe predprijatie. 2015, 12: 37-39. (in Russian)

15. Laushkin A. V., Haziev A. A. Kolichestvennaja ocenka popadanija vody v motornoe maslo iz atmosfernogo vozduha pri jekspluatacii avtomobilja [A quantitative assessment of the ingress of water into engine oil from atmospheric air during car operation] Avtotransportnoe predprijatie. 2015, 7: 40-42. (in Russian)

16. Bojarshinov M.G., Kuznecov N.I. Temperaturnyj rezhim sistemy vypuska avtomobilja pri ponizhennyh temperaturah [The temperature regime of the car exhaust system at low temperatures] Mir transporta. 2019; 17(4): 48-67. https://doi.org/10.30932/1992-3252-2019-17-48-67 (in Russian)

17. Boyarshinov M.G., Lobov N.V., Kuznecov N.I., Martem’yanov A.O. Temperaturnyj rezhim sistemy vypuska otrabotannyh gazov avtomobilya v usloviyah ponizhennyh temperatur [The temperature regime of the exhaust system of the vehicle in low temperatures] Vestnik PNIPU. Transport. Transportnye sooruzheniya. Ekologiya. 3: 5-16. DOI: 10.15593/24111678/2018.03.01 (in Russian)

18. Moroz S.M. Tehnologija avtomaticheskogo individual’nogo normirovanija rashoda topliva dlja avtotransportnyh sredstv [Technology of automatic individual regulation of fuel consumption for vehicles] Gruzovik, 2019, 3: 11-15. (in Russian)

19. Boldin A.P., Maksimov V.A., Postolit A.V., Mirotin L.B., Haziev A.A. Metodika operativnogo opredelenija norm rashoda topliva gorodskimi avtobusami s uchjotom slozhnosti marshruta dvizhenija [The methodology for the rapid determination of fuel consumption rates by city buses, taking into account the complexity of the route of movement] Avtomobil’naja promyshlennost’, 2018, 6: 22-26. (in Russian)

20. Shhurin K.V., Tret’jak L.N., Gerasimov E.M., Vol’nov A.S. Garmonizacija standartov evropejskogo sojuza i rossijskoj federacii po ocenke vlijanija avtotransporta na jekologicheskie sistemy gorodov [Harmonization of standards of the European Union and the Russian Federation for assessing the impact of vehicles on the ecological systems of cities] Gruzovik, 2012; 9. (in Russian)

21. Blagonravov A.A. Jurkevich A.A. Jurkevich A.V. Rashod topliva pri dvizhenii v gorodskom ezdovom cikle avtomobilja s besstupenchatym mehanicheskim transformatorom [Fuel consumption when driving in a city driving cycle of a car with a stepless mechanical transformer] Zhurnal Avtomobil’nyh inzhenerov, 2014. (in Russian)


Review

For citations:


Boiarshinov M.G., Kuznetsov N.I. Vehicle speed influence on exhaust system surface temperature. The Russian Automobile and Highway Industry Journal. 2021;18(2):192-202. (In Russ.) https://doi.org/10.26518/2071-7296-2021-18-2-192-202

Views: 787


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-7296 (Print)
ISSN 2658-5626 (Online)