Predicting the frost heaving of bottom ash value for road design
https://doi.org/10.26518/2071-7296-2020-17-5-624-635
Abstract
Introduction. Most of the researchers dealing with the use of ash and slag materials (especially in the construction) have focused on the study of their mechanical characteristics or assessment of their impact on the environment. At the same time, the design of roads with embankments of soil materials in the Northern regions requires taking into account the behavior of materials in cold climates.
Although ash and slag materials are a typical dispersed soil, it is prone to frost heaving (due to the peculiarities of the internal structure). In addition, these materials have not been sufficiently tested in the development of the Russian Federation standards and codes for road design. Therefore, the professional environment is developing a hypothesis about the inadmissibility of using ash and slag materials in road embankments due to excessive frost heaving of this material, which, in our opinion, is not the case.
Methods of research. To obtain real values of ash and slag frost heaving, specialists of Siberian State Transport University carried out additional studies to determine the relative deformations of frost heaving of medium-grained samples and coarse-grained ash slabs. SibADI specialists compared the results obtained with earlier studies to determine the relative deformations of frost heaving of fine-grained ash slabs samples, and analyzed the entire array of data obtained.
Results. As a result of joint work, an empirical model was obtained that makes it possible to predict the amount of frost heaving of ash and slag material depending on its degree of compaction, initial moisture content (when working in a closed circuit or moisture in freezing through an open system), particle size distribution and freezing temperature. This makes it possible to determine the degree of frost heaving of ash and slag systems based on the grain size composition and the calculated characteristics of the subgrade.
About the Authors
A. A. LunevRussian Federation
Alexander A. Lunev - Cand. of Sci., Head of the Technogenic Building Materials Studying Research Laboratory, Associate Professor of the Road Design Department, Siberian State Automobile and Highway University.
644080, Omsk, Prospect Mira, 5.
tel .: 8-999-453-39-30
D. A. Razuvaev
Russian Federation
Denis A. Razuvaev - Cand. of Sci., Head of the Quality Control of Road Clothing and Soil Research Laboratory, Associate Professor of the Research, Design and Construction of iron and steel Roads Department, Siberian State Transport University.
630049, Novosibirsk region, Novosibirsk, Dusi Kovalchuk st., 191.
V. V. Golubenko
Russian Federation
Vladimir V. Golubenko - Cand. of Sci., Associate Professor, Road Design Department, Siberian State Automobile and Highway University.
644080, Omsk, Prospect Mira, 5.
M. G. Chakhlov
Russian Federation
Mikhail G. Chakhlov - Engineer of the Quality control of road clothing and soil Research Laboratory, Siberian State Transport University.
630049, Novosibirsk Region, Novosibirsk, Dusi Kovalchuk st., 191.
References
1. Yang L., Sihong L., Eduardo A., LiujiangW., Lei X., Zhuo L. Volume changes and mechanical degradation of a compacted expansive soil under freeze-thaw cycles. Cold Regions Science and Technology. 2019; 157: 206-214. DOI:https://doi.org/10.1016/j.coldregions.2018.10.008.
2. Isakov A., Razuvaev D., Gudkova I., Chakhlov M. Modeling the operation of road pavement during the thawing of soil in the subgrade of highways. MATEC Web of Conferences. X. 2018. 239. 05001. DOI:https://doi.org/10.1051/matecconf/201823905001.
3. Talamucci F. Freezing processes in porous media: Formation of ice lenses, swelling of the soil. Mathematical and Computer Modelling. 2003; 37 (5-6): 595-602. DOI:https://doi.org/10.1016/S0895-7177(03)00053-0.
4. Sushovan D., Nadaf M.B., Mandal J.N. An Overview on the Use of Waste Plastic Bottles and Fly Ash in Civil Engineering Applications. Procedia Environmental Sciences. 2016; 35: 681-691. DOI:https://doi.org/10.1016/j.proenv.2016.07.067.
5. Haleema A., Luthrab B., Mannana S., Khuranaa S. Kumarc Critical factors for the successful usage of fly ash in roads & bridges and embankments: Analyzing indian perspective. Resources Policy. 2016; 49: 334-348. DOI:10.1016/j.resourpol.2016.07.002.
6. Hadbaatar A., Mashkin N.A., Stenina N.G. Study of Ash-Slag Wastes of Electric Power Plants of Mongolia Applied to their Utilization in Road Construction. Procedia Engineering. 2016; 150: 1558-1562. DOI:https://doi.org/10.1016/j.proeng.2016.07.111.
7. Seymour J., Bozok O., Hughes A., Bodine B. Condition of coal ash embankments. 2015 World of Coal Ash (WOCA) : Conference in Nasvhille 5-7. 2015. 1-27. URL:http://www.flyash.info/2015/028-seymour-2015.pdf (date of reference: 05.10.2020).
8. Pichugin E.A. Analiticheskij obzor nakoplennogo v Rossijskoj Federacii opyta vovlecheniya v hozyajstvennyj oborot zoloshlakovyh othodov teploelektrostancij [Analytical review of the experience of involving ash slag waste of thermal power plants in economic circulation in the russian federation]. Problemy regional'noj ekologii. 2019; 4: 77-87. DOI:10.24411/1728-323X-2019-14077. (in Russian)
9. Sirotyuk V.V., Ivanov E.V., Shevcov V.R. Re-zul'taty monitoringa opytnogo uchastka zemlyanogo polotna avtodorogi iz zoloshlakovoj smesi [Elektronnyj resurs]. Zoloshlaki TES: udalenie, transportirovka, per-erabotka, skladirovanie : materialy IV Mezhdunarod-nogo nauchno-prakticheskogo seminara. Moskow, Izdatel'skij dom MEI. 2012. 85-88. URL:https://www.elibrary.ru/item.asp?id=29056375 (data obrashcheniya: 05.10.2020). (in Russian)
10. Ivanov E.V., Isakov A.L., Sirotyuk V.V. Ek-sperimental'noe issledovanie i matematicheskoe modelirovanie promerzaniya zemlyanogo polotna iz zoloshlakovoj smesi [Experimental study and mathematical modeling of roadbed freezing made of ash mixture] [Elektronnyj resurs]. Vestnik SibADI. 2013; 3(31): 71-76. URL:https://www.elibrary.ru/item.as-p?id=19032655 (data obrashcheniya: 05.10.2020). (in Russian)
11. Sirotyuk V.V., Lunyov A.A., Ivanov E.V. Zoloshlakovaya smes' dlya zemlyanogo polotna. Avtomobil'nye dorogi. 2016; 6(1015): 72-79. (in Russian)
12. Fursov V.V., Balyura M.V. Issledovanie moro-zoustojchivosti zoloshlakovyh othodov teplovyh elektrostancij dlya celej stroitel'stva [Research of frost resistance of ashes and slag waste of thermal power stations for construction purposes]. Vestnik Tomskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta. 2013; 1: 242-252. (in Russian)
13. Balyura M.V. Issledovanie stroitel'nyh svojstv zoly Tomskoj GRES-2. Problemy gidrogeologii, inzhenernoj geologii, osnovanij i fundamentov. Tomsk, Izd-vo TGU, 1988. 97-104. (in Russian)
14. DiGioia A.M., Nuzzo W.L. Fly Ash as Structural Fill. Journal of Power Division. 1972; 98(1): 77-92.
15. Gray D.H., Lin Y. K. Engineering Properties of Compacted Fly Ash. Soil Mechanics and Foundation Engineering Division. 1972; 98(4): 361-380.
16. Martin J.P., Collins B.J., Biehl F.J. Properties and use of fly ashes for embankments. Energy. 1990; 116(2): 71-86.
17. Ossowski R., Gwizdala K. Mechanical properties of a dike formed from a soil-ash composite. Procedia Engineering. 2017; 172: 816-822. DOI: https://doi.org/10.1016/j.proeng.2017.02.129.
18. Sikora Z., Ossowski R. Geotechnical Aspects of Dike Construction Using Soil-Ash Composites. Proceedia Engineering. 2013; 57: 1029-1035. DOI:https://doi.org/10.1016/j.proeng.2013.04.130.
19. Balachowski L., Sikora Z. Mechancal properties of fly ash - dredged material mixtures on laboratory test. Studia Geotechnica et Mechanica. 2013; 35(3): 3-11. DOI:10.2478/sgem-2013-0026.
20. Hotineanu A., Bouasker M., Aldaood A., Al-Mukhtar M. Effect of freeze-thaw cycling on the mechanical properties of lime-stabilized expansive clays. Cold Regions Science and Technology. 2015; 119: 151-157. DOI:https://doi.org/10.1016/j.coldregions.2015.08.008.
21. Cwiakala M., Gajewska B., Kraszewski C., Rafalski L. Laboratory investigations of frost susceptibility of aggregates applied to road base courses. Transportation research procedia. 2016; 14: 3476-3484. DOI:https://doi.org/10.1016/j.trpro.2016.05.312.
22. Kraszewski C., Rafalski L. Laboratory Examination of Frost-Heaving Properties of Road Unbound Mixtures Based on Fines Content and Plasticity Index. Procedia Engineering. 2016; 143: 836-843. DOI:https://doi.org/10.1016/j.proeng.2016.06.136.
23. Yangsheng B., Xiaoyan D., Qianli Z., Jinfei C. Frost Heave Deformation Analysis Model for Microheave Filler. [Electronic resource]. Geotechnical Engineering. Advances in Soil Mechanics and Foundation Engineering. 2019. 1-28. DOI:http://dx.doi.org/10.5772/intechopen.82575. URL:https://pdfs.semanticscholar.org/188c/f12c6c4977aa56e-fefaf0d9112cd0231d3c6.pdf (date of reference: 05.10.2020).
24. Pingsheng W., Guoqing Z. Frost-heaving pressure in geotechnical engineering materials during freezing process. International Journal of Mining Science and Technology. 2018; 28 (2): 287-296. DOI:https://doi.org/10.1016/j.ijmst.2017.06.003.
25. Liu H., Maghoul P., Shalaby A., Bahari A. Thermo-Hydro-Mechanical Modeling of Frost Heave Using the Theory of Poroelasticity for Frost-Susceptible Soils in Double-Barrel Culvert Sites. Transportation Geotechnics. 2019; 20. 100251. DOI:https://doi.org/10.1016/j.trgeo.2019.100251.
26. Ivanov E.V., Obosnovanie primeneniya zoloshlakovyh smesej dlya stroitel'stva zemlyanogo polotna s uchetom vodno-teplovogo rezhima [Justification of the use of ash and slag mixtures for the construction of a roadbed, taking into account the water-thermal regime]. Omsk, 2015. 165 p. (in Russian)
Review
For citations:
Lunev A.A., Razuvaev D.A., Golubenko V.V., Chakhlov M.G. Predicting the frost heaving of bottom ash value for road design. The Russian Automobile and Highway Industry Journal. 2020;17(5):624-635. (In Russ.) https://doi.org/10.26518/2071-7296-2020-17-5-624-635