Preview

The Russian Automobile and Highway Industry Journal

Advanced search

Review of manufacturers'recommendations on technological capabilities of ejectable excavator vibroplates assessment during soil compaction

https://doi.org/10.26518/2071-7296-2020-17-5-562-573

Abstract

Introduction. Add-on compactors for excavators (ACE hereinafter) are replaceable working equipment for excavators. They are used for soil compaction after the backfill of trenches, wells, foundation cavities and other “narrow spaces” of construction, as well as soil compaction at slopes of embankments and excavations.
In practical use of ACE, builders face two challenges:
to justify the choice of an ACE for soil compaction under given conditions determined by the soil type and moisture, layer thickness, and the required compaction factor; to determine the time required to compact soil with an ACE at a single point positional compaction to ensure the required compaction factor of a given type of soil in a layer of required thickness.
The problems above require the information regarding technological capabilities of ACEs in different technological situations of soil compaction. The assessment of such technological capabilities of ACEs, at the same time, should take into account the ongoing transition to a new regulatory framework in Russia in the field of assessment indicators for the results of soil compaction in construction.
Materials and methods. ACE technological capabilities review was conducted based on the information provided on the official websites of the largest Russian and foreign ACE manufacturers and suppliers.
Conclusion. The analysis of information provided by ACE manufacturers and suppliers showed that most of that information is technical specifications of ACEs and excavators. There is almost no information on technological capabilities of ACEs. At the same time, ACE manufacturers and suppliers use ambiguous terminology (for example, “compaction volume”) in the assessment of technological capabilities.
Practical value. Lack of information on technological capabilities of ACEs in various technological situations of soil compaction leads to errors in selection of an ACE model and its operation time during single point positional soil compaction, which increases the risk of under compaction and reduced service life of constructed objects. To solve this problem, the Construction and Road-Building Machinery Department of Yaroslavl State Technical University is developing a methodology for calculating the results of soil compaction with an ACE in different technological situations.

About the Authors

I. S. Tiuremnov
Yaroslavl State Technical University
Russian Federation

Tyuremnov Ivan S. - Candidate of Technical Sciences, Assoc. Prof., Head of Department of Road Construction Machinery, Yaroslavl State Technical University.
Moskovsky Prospekt, 88, 150023, Yaroslavl.



D. V. Fedorova
Yaroslavl State Technical University
Russian Federation

Fedorova Darya V. - senior lecturer, Department of Descriptive Geometry and Engineering Graphics, Yaroslavl State Technical University.
Moskovsky Prospekt, 88, 150023, Yaroslavl.



References

1. Kravchenko I.N., Mirzoev V.V., Mikhaylov R.V., Markovchin S.G., Salyaev S.I. Primenenie navesnogo oborudovaniya dlya uplotneniya gruntov i iskusstvennykh nasypey transportnykh magistraley [Application of attachments for compaction of soils and artificial embankments of transport highways]. Mekhanizatsiya stroitel'stva. 2012; 8 (818): 2-10. (in Russian)

2. Tyuremnov I. S., Ignat'ev А.А. Edinyi' podchod v sovershenstvovanii kriterie uplotneniya dorogno-stroitel'nych materialov [We need a unified approach to improving the criteria for compaction of road construction materials]. Avtomobil'nye dorogi. 2010; 5 (942): 67-69. (in Russian)

3. Kostel'ov M.P., Pakharenko D.V. Innovatsii dlya vysokogo kachestva dorozhnykh rabot i ob”ektov ZAO «VAD» [Innovations for high-quality road works and facilities of JSC “ VAD»]. Dorozhnaya tekhnika. 2009. 36-52. (in Russian)

4. Kostel'ov M.P., Pakharenko D.V. Opyt firmy VAD po ustroystvu plotnykh, prochnykh i zhestkikh shchebenochnykh dorozhnykh osnovaniy [VAD company's experience in the construction of dense, strong and rigid crushed stone road foundations]. Dorozhnaya tekhnika. 2006. 12-23. (in Russian)

5. Sazonova S.A., Rumyantsev S.D. Primenenie ekspress-metodov dlya opredeleniya kharakteristik nasypnykh gruntov [Application of Express methods for determining the characteristics of bulk soils]. Vestnik PNIPU. Stroitel'stvo i arkhitektura. 2017; 8(3). 113-120. DOI: 10.15593/2224-9826/2017.3.13. (in Russian)

6. Trufanov A.N., Rostovtsev A.V. K voprosu razvitiya normativnoy bazy laboratornykh ispytaniy gruntov [On the development of the regulatory framework for laboratory testing of soils]. Promyshlennoe i grazhdanskoe stroitel'stvo. 2016; 10: 79-84. URL: http://www.pgs1923.ru/ru/index.php?m=4&y=2016&v=10&p=00&r=11. (in Russian)

7. Kozlov A.V. Problemy interpretatsii rezul'tatov shtampovykh ispytaniy pri kontrole kachestva uplotneniya gruntov zemlyanogo polotna i osnovaniy dorozhnykh odezhd [Problems of interpretation of the results of stamp tests in quality control of compaction of the groundbed and road surface bases]. Polevye i laboratornye metody issledovaniya gruntov - problemy i resheniya. Materialy Obshcherossiyskoy nauchno-prakticheskoy konferentsii. 2019. 92-101. (in Russian)

8. Goryachev M.G. K voprosu o zaimstvovanii norm FRG na minimal'nyy modul' deformatsii rabochey chasti zemlyanogo polotna dlya raschiota dorozhnykh odezhd v Rossii On the issue of borrowing the German norms for the minimum modulus of deformation of the working part of the roadbed for calculating road surfaces in Russia []. Avtomobil'. Doroga. Infrastruktura. 2020; 1 (23). 3 p. (in Russian)

9. Makhmutov M.M., Sakhapov R.L. O kachestve uplotneniya gruntov zemlyanogo polotna [About the quality of compaction of the groundbed // Proceedings of the Kazan state University of architecture and civil engineering]. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. 2015; 2(32). 289-294. URL: https://izvestija.kgasu.ru/ru/nomera-zhernala/arkhiv-zhurnala?sod=sod2_2015&idizv=500. (in Russian)

10. Strigun K.YU. Primenenie ustanovok dinamicheskogo nagruzheniya dlya kontrolya stepeni uplotneniya gruntov [Application of dynamic loading units for monitoring the degree of soil compaction]. Nauka XXI veka: opyt proshlogo - vzglyad v budushchee. Materialy II Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Ministerstvo obrazovaniya i nauki Rossiyskoy Federatsii.. 2016. 257-261. (in Russian)

11. Strigun K.YU. Primenenie ustanovok dinamicheskogo nagruzheniya dlya kontrolya stepeni uplotneniya gruntov [Application of dynamic loading units for monitoring the degree of soil compaction]. Vestnik magistratury. 2016; 5-2 (56). 88-90. (in Russian)

12. KHarkhuta N.YA., Vasil'ev YU.M. Prochnost', ustoychivost' i uplotnenie gruntov zemlyanogo polotna avtomobil'nykh dorog [Strength, stability and compaction of the soil subgrade of highways]. Moskow, Transport, 1975. 288 p. (in Russian)

13. Tyuremnov I. S., Fedorova D. V. Statis-tichesky' analiz tehnicheskih harakteristik navesnyh ekskavatornyh vibroplit [Statistical analysis of technical characteristics of mounted excavator vibrating plates]. The Russian Automobile and Highway Industry Journal. 2019; 16(2): 122-133. URL: https://doi.org/10.26518/2071-7296-2019-2-122-133. (in Russian)

14. Adam, D., Kopf F. Operational Devices for Compaction Optimization and Quality Control (Continuous Compaction Control & Light Falling Weight Device). Proceedings of the International Seminar on Geotechnics in Pavement and Railway Design and Construction, Athens, Greece. 2004. Pp. 97-106.

15. Tyuremnov I.S. Obzor system nepreryvnogo kontrolya uplotneniya grunta dlya vibracionnyh katkov. Chast' 3 [Overview of continuous soil compaction monitoring systems for vibration rollers. Part 3.]. Vestnik TOGU. 2016; 2(41): 115-122. URL: http://pnu.edu.ru/vestnik/pub/articles/2226/. (in Russian)

16. Savel'ev S.V., Bury' G.G. Algoritm opredeleniya parametrov vibracyonnyh katkov, uchityvaya massu uplotnyaemogo grunta v zone aktivnogo dey'stviya vibracii [Algorithm for determining the parameters of vibration rollers, taking into account the mass of compacted soil in the zone of active vibration action]. Izbrannye doklady II mejdunarodnoy' nauchnoy' konferencii studentov I molodyh uchenyh “Molodej', nauka, technologii. 2016. 327-332. (in Russian)

17. Belostocki' B.A. К raschetu optimal'nyh parametrov trambuyuchih mashin [To calculate the optimal parameters of ramming machines]. Leningradskoe pravlenie NTO Stroi'industrii SSSR, 1959. 3-11. (in Russian)

18. Kostel'ov M. P. “Umnye vibrokatki” dlya dorojnikov (obzor s ocenkoi' novinok poslednego vremeni) [“Smart refrigerators” for the road (overview of the evaluation of the innovations of recent time)]. Katalog-spravochnik Dorognaya tehnika 2006. 2006. 30-62. (in Russian)

19. CHernysh A.S. Uplotnenie gruntov s odnovremennym vytrambovyvaniem kotlovanov [Compaction of soil with simultaneous tamping of ditches]. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. SHukhova. 2015; 5: 112-119. (in Russian)

20. Savel'ev S.V., Buryy G.G., Adnagulova Z.R. Metodika obosnovaniya parametrov vibratsionnykh katkov dlya uplotneniya gruntovykh nasypey, uchityvayushchaya zonu aktivnogo deystviya vibratsii [Method of substantiation of parameters of vibration rollers for compaction of soil embankments, taking into account the zone of active action of vibration]. Obrazovanie. Transport. Innovatsii. Stroitel'stvo. Sbornik materialov III Natsional'noy nauchno-prakticheskoy konferentsii. 2020. 54-60. (in Russian)

21. Kostel'ov M. P. Vliyanie impul'snogo vozdei'stviya na plasticheskie deformacii svyaznogo grunta pod jestkim shtampom [Effect of pulse action on plastic deformations of cohesive soil under a rigid stamp]. Dinamika osnovani' I fundamentov. Trudy 2-y' konferencii. 1969; 2: 65-70. (in Russian)

22. Tyuremnov I.S., Filatov I.S., Ignat'ev A.A. Obzor rekomendatsiy proizvoditeley po ispol'zovaniyu vibratsionnykh katkov dlya uplotneniya grunta [Overview of manufacturers ‘ recommendations on the use of vibration rollers for compaction of soil]. Vestnik TOGU. 2014; 2(33): 155-162. URL: http://pnu.edu.ru/vestnik/pub/articles/1961/. (in Russian)

23. Tyuremnov I.S., Novichikhin A.A., Filatov I.S. Obzor rekomendatsiy proizvoditeley po ispol'zovaniyu vibratsionnykh plit dlya uplotneniya grunta [Overview of manufacturers ‘ recommendations on the use of vibration plates for compaction of soil]. Mekhanizatsiya stroitel'stva. 2014; 12: 28-32. (in Russian)

24. Tyuremnov I.S., Razumov S.V., Dotsenko A.I. Metodika rascheta parametrov i rezhimov raboty dvukhmassnykh rabochikh organov trambuyushchikh mashin [Method of calculating parameters and operating modes of two-mass working bodies of ramming machines]. Izvestiya vuzov. Mashinostroenie. 2005: 2: 37-44. (in Russian)

25. Tyuremnov I.S., Ignat'ev A.A. Uplotnenie gruntov vibratsionnymi katkami [Compaction of soil with vibrating rollers]. YAroslavl', YAGTU, 2012. 140 p. (in Russian)

26. Tyuremnov, I.S., Morev A.S. Sistemy nepreryvnogo kontrolya uplotneniya grunta vibratsionnymi katkami [Systems for continuous monitoring of soil compaction by vibrating rollers]. YAroslavl', YAGTU, 2019. 172 p. (in Russian)

27. Tyuremno I.S., Novichikhin. A.A. Uplotnenie gruntov vibratsionnymi plitami [Soil compaction with vibrating plates]. YAroslavl', YAGTU, 2018. 143 p.


Review

For citations:


Tiuremnov I.S., Fedorova D.V. Review of manufacturers'recommendations on technological capabilities of ejectable excavator vibroplates assessment during soil compaction. The Russian Automobile and Highway Industry Journal. 2020;17(5):562-573. (In Russ.) https://doi.org/10.26518/2071-7296-2020-17-5-562-573

Views: 682


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-7296 (Print)
ISSN 2658-5626 (Online)