Preview

The Russian Automobile and Highway Industry Journal

Advanced search

CHANGES JUSTIFICATION IN A CALCULATING METHOD OF LOAD STABILITY OF AUTOMOTIVE HOISTING CRANES AND AUTOMOTIVE MANIPULATOR CRANES BASED ON THE NORMATIVE DOCUMENTS ANALYSIS

https://doi.org/10.26518/2071-7296-2020-17-3-328-339

Abstract

Introduction. The main requirement for lifting equipment is a strict compliance with safe operation measures. Therefore, special attention is focused on this issue when designing each unit of the equipment. However, despite the extensive list of the current normative documents and systematic monitoring, according to the annual official reports of the Federal service for environmental, technological and nuclear supervision over recent years the facilities that use lifting structures have high indicators for the number of accidents. In addition, the study of a load stability ratio determining in the design of automotive hoisting cranes and automotive manipulator cranes is particularly relevant at the present time due to a wide development of new lifting equipment as the development of the market for cranes has resulted in the occurrence of new technical issues in design and manufacture this type of lifting equipment. As part of the research work to improve the accuracy of calculating the load stability of automotive hoisting cranes and automotive manipulator cranes based on the analysis of existing normative and technical documents the possible occurrence of the accidents causes due to imperfection of regulatory instructions or non-compliance with regulatory instructions during design manufacturer work was considered.

Materials and methods. This article is devoted to the study the fundamental principles of the nominative documents regulating the design and operation of the automotive hoisting cranes and automotive manipulator cranes. Both of the current and archived nominative documents in the field of lifting equipment are considered. Special attention is paid to the issues of determining the load stability of the automotive hoisting cranes and automotive manipulator cranes.

Discussion and conclusion. The key differences in the calculating method of the load stability of the automotive hoisting cranes and automotive manipulator cranes are highlighted. The accidents statistics of load-lifting mechanisms and lifting structures of the Federal service for environmental, technological and nuclear supervision are given. The main causes of lifting equipment accidents are highlighted. The ways of solving the modernization of the existing methodology for determining the load stability of automotive hoisting cranes are proposed by including previously unrecorded factors related to the technical features of the chassis which contributes to improving the accuracy of the obtained values of the load stability ratio.

About the Author

K. G. Pugin
Federal State Budgetary Educational Institution of Higher Education Perm National Research Polytechnic University (PNRPU); Federal State Budgetary Educational Institution of Higher Education Academician D.N. Prianishnikov Perm State Agrarian and Technological University
Russian Federation

Konstantin G. Pugin - Dr. of Sci., Professor of the Automobiles and Technological Machines Department, Professor of the Technical Service and Machines Repair Department

614990, Perm, Komsomolsii Ave. gical Machines Department

614990, Perm, Petropavlovsk Street., 23



References

1. Shchetkin R.V., Scherbakov I.Yu., Badurin A.P., Nowilov V.A. Osnovnye problemy sertifikacii avtomobil’nyh kranov-manipuljatorov i puti ih reshenija pri organizacii serijnogo proizvodstva [Main problems of car cranes-manipulators certification and ways of their solution in the serial production organization]. Promyshlennost’ i bezopasnost’. 2015; 2: 20–23. (in Russian)

2. Bandurin R.A. Rynok kranov-manipuljatorov v Rossii [Manipulator cranesmarket in Russia]. Problemy sovremennoj jekonomiki. 2015; 26: 138-142. (in Russian)

3. Barmin I.V., Milyutin, V.N., Dernovoj V.M. Avarija avtomobil’nogo gruzopod’emnogo krana [Automative hoisting cranes accident]. Bezopasnost’ truda v promyshlennosti. 2015; 7: 72-74. (in Russian)

4. Alexandrov M. P. Gruzopod’emnye mashiny [Load-lifting machines]. Moscow: N.E. Bauman MGTU, 2000: 552 p. (in Russian)

5. Kacalak W., Budniak Z., Majewski M. Stability assessment as a criterion of stabilization of the movement trajectory of mobile crane working elements Int. J. of Applied Mechanics and Engineering. 2018; 23, No.1: 65-77 DOI: 10.1515/ijame-2018-0004.

6. Fujioka D., Rauch A., Singhose W. Tip-Over Stability Analysis of Mobile Boom Cranes with Double-Pendulum Payloads. In Proceedings of the American Control Conference 2009, St. Louis, MO, USA, 10–12 June 2009: 3136–3141. koncepcij obespechenija ustojchivosti gruzopod’emnyh kranov [Comparative analysis of various concepts of lifting cranes stability]. Bezopasnost’ truda v promyshlennosti – 2010; 1: 13-16. (in Russian)

7. Borisov V.A. Sravnitel’nyj analiz razlichnyh koncepcij obespechenija ustojchivosti gruzopod’emnyh kranov [Comparative analysis of various concepts of lifting cranes stability]. Bezopasnost’ truda v promyshlennosti – 2010; 1: 13-16. (in Russian)

8. Kacalak W., Budniak Z. and Majewski M. Crane stability for various load conditions and trajectories of load translocation. Mechanic, 2016; 12: 1820-1823.

9. Posiadala B., Warys P., Cekus D. and Tomala M. The dynamics of the forest crane during the load carrying. International Journal of Structural Stability and Dynamics. 2013; 13, No. 7: 1340013.

10. Romanello G. Stability analysis of mobile cranes and determination of outriggers loading. J. Eng. Des.Technol. 2018; 16: 938–958.

11. Zorin V.A., Baurova N.I. Povyshenie bezopasnosti dorozhno-stroitel’nyh mashin i oborudovanija [Improving Safety of Road Construction Machines and Equipment]. Nauka i tehnika v dorozhnoj otrasli. 2009; 1: 39–40. (in Russian)

12. Zhadanovsky B.V. Organizacija ustojchivosti pod’emno-transportnyh sredstv v stroitel’nom proizvodstve [Organization of lifting and transport vehicles stability in construction production]. Vestnik MGSU. 2016; 5: 52-58. (in Russian)

13. Rauch A. Stability analysis of mobile boom cranes. Atlanta: Georgia Institute of Technology, 2008: 103 p.

14. Antsev V.Y., Tolokonnikov A.S., Gorynin A.D. and Reutov A.A., A statistical model of operational impacts on the framework of the bridge crane. IOP Conference Series: Materials Science and Engineering. 2017; 10: 012053.

15. Olearczyk J., Bouferguène A., Al-Hussein M. et al. “Automating motion trajectory of crane-lifted loads”, Automation in Construction. 2014; 45: 178.

16. Wu J.; Guzzomi A.L.; Hodkiewicz M. Static stability analysis of non-slewing articulated mobile cranes. Aust. J. Mech. Eng. 2014; 12: 60–76.

17. Lei Z., Taghaddos H., Hermann U. ‘A methodology for mobile crane lift path checking in heavy industrial projects. Autom Constr. 2013; 31: 201341–53.

18. Olearczyk J., Lei Z., Ofrim B., Sh. Han and M. Al-Hussein, Intelligent Crane Management Algorithm for Construction Operation. In: 2015 Proceeding of 32nd ISARC.

19. Koritov M. S., Scherbakov V.S., Belyakov V.E. Umen’shenie uglovyh kolebanij gruza na gibkom podvese pri peremeshhenii bazovogo shassi gruzopod’emnogo krana [Reducing angular oscillations of the load on a flexible suspension when moving a base chassis of a crane]. Stroitel’nye i dorozhnye mashiny. 2019; 6: 45-51. (in Russian)

20. Lagerev A.V., Konchitz S.V., Bleishmidt L.I. Ocenka riska pri jekspluatacii samohodnyh gruzopod’emnyh kranov strelovogo tipa v uslovijah nedostatochnoj informacii [Risk assessment during operation of self-propelled jib type crane in conditions of insufficient information] Nauchno-tehnicheskij vestnik Brjanskogo gosudarstvennogo universiteta. 2017; 2: 77-94. (in Russian)

21. Redkin A.V., Sorokin P.A. Metody obespechenija ustojchivosti strelovyh samohodnyh kranov pri nenormiruemyh vneshnih vozdejstvijah [Ensuring stability methods of self-propelled jib type cranes under abnormal external impacts]. Stroitel’nye i dorozhnye mashiny. 2016; 9: 16-19. (in Russian)

22. Sorokin P. A., Redkin A. V., Zhil’cov A. V. Obespechenie ustojchivosti strelovogo samohodnogo krana s jelektrogidravlicheskim privodom [Stability of a self-propelled jib type crane with electro hydraulic drive]. Pod’jomno-transportnoe delo. 2008; 6: 5-7. (in Russian)

23. Koritov M.S., Scherbakov V.S., Belyakov V.E. Analiz vlijanija diagonal’nyh uglov naklona opornoj platformy gruzopod’emnogo krana na koordinaty ogolovka teleskopicheskoj strely [Analysis of the influence of diagonal angles of a support platform inclination of a lifting crane on the coordinates of a telescopic boom head]. Stroitel’nye i dorozhnye mashiny. 2019; 7: 32-39. (in Russian)

24. Lagerev A.V., Lagerev A.I., Milto A.A. Preliminary Dynamics and Stress Analysis of Articulating Non- Telescoping Boom Cranes Using Finite Element. International Review on Modelling and Simulations. 2015; 8. №2: 223-226. http://dx.doi.org/10.15866/iremos.v8i2.5713.

25. Lagerev A.V., Lagerev A.I., Milto A.A. Tool for Preliminary Dynamics and Stress Analysis of Articulating. International Review on Modelling and Simulations (I.R.E.MO.S.). 2014; 7. № 4: 644-652. DOI: http://dx.doi.org/10.15866/iremos.v7i4.2045.


Review

For citations:


Pugin K.G. CHANGES JUSTIFICATION IN A CALCULATING METHOD OF LOAD STABILITY OF AUTOMOTIVE HOISTING CRANES AND AUTOMOTIVE MANIPULATOR CRANES BASED ON THE NORMATIVE DOCUMENTS ANALYSIS. The Russian Automobile and Highway Industry Journal. 2020;17(3):328-339. (In Russ.) https://doi.org/10.26518/2071-7296-2020-17-3-328-339

Views: 595


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-7296 (Print)
ISSN 2658-5626 (Online)