CRITICAL REVIEW OF METHODS FOR EVALUATING ACOUSTIC CHARACTERISTICS OR PREMISES
https://doi.org/10.26518/2071-7296-2020-17-2-274-285
Abstract
Introduction: The development of effective structural materials with improved acoustic characteristics is relevant for the modern construction industry. Considering the variety of international building standards for acoustic insulation and soundproofing of buildings, it is essential to systematize the modern methods of studying these characteristics. The purpose of the study was a comprehensive review of methods for determining acoustic characteristics in construction, as well as an analysis of literature and international standards to improve the health and comfort of the urban population.
Main part: Due to the variety and complication of the study of the acoustic characteristics of buildings, premises and individual walling, the article provides an analysis of methods for evaluating these characteristics. The limitations on the size of rooms and sound frequencies for measuring reverberation time have been identified. The process of improving the method of measuring acoustic impedance in Kundt’s tube is shown. The methodology for determining the numerical parameters of sound insulation in buildings using the study of building envelopes taking into account the spectra of various noise sources located inside and outside the building is considered in detail. It was found that existing methods for measuring impact noise show poor reproducibility in the low frequency range. The analysis of the works proved that the sound reflection characteristics theoretically depend on the thickness and rigidity of the reflecting surface and its surface density.
Conclusions: The scope of building materials with improved acoustic characteristics is quite extensive. Further research may be aimed at improving methods for studying the characteristics of sound absorption and sound reflection.
Financial transparency: the authors have no financial interest in the presented materials or methods. There is no conflict of interest.
Keywords
About the Authors
R. S. FediukRussian Federation
Roman S. Fediuk – Associate Professor of the Hydraulic Engineering, Theory of Buildings and Structures Department, Federal State Autonomous Institution of Higher Education
690950, 8, Sukhanova St., Vladivostok
A. V. Baranov
Russian Federation
Andrey V. Baranov (Vladivostok, Russian Federation), Aspirant, Federal State Autonomous Institution of Higher Education
690950, 8, Sukhanova St., Vladivostok
R. A. Timokhin
Russian Federation
Roman A. Timokhin (Vladivostok, Russian Federation), student, Federal State Autonomous Institution of Higher Education
690950, 8, Sukhanova St., Vladivostok
References
1. Cuthbertson D., Berardi U., Briens C., Berruti F. Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties. Biomass and Bioenergy. 2019. doi:10.1016/j.biombioe.2018.11.007.
2. Lesovik V.S., Chulkova I.L. Upravlenie strukturoobrazovaniem stroitel’nyh kompozitov: monografija [Structural management of building composites: monograph]. Sibirskaja gosudarstvennaja avto-mobil’no-dorozhnaja akademija. Omsk, 2011: 420. (in Russian)
3. Vinokur R. Infrasonic sound pressure in dwellings at the Helmholtz resonance actuated by environmental noise and vibration, Appl. Acoust. (2004). doi:10.1016/S0003-682X(03)00117-8.
4. Li X., Liu Q., Pei S., Song L., Zhang X. Structure-borne noise of railway composite bridge: Numerical simulation and experimental validation. J. Sound Vib. 2015. doi:10.1016/j.jsv.2015.05.030.
5. Tsunekawa S., Kajikawa Y., Nohara S., Ariizumi M., Okada A. Study on the perceptible level for infrasound, J. Sound Vib. 1987. doi:10.1016/S0022-460X (87)80089-5.
6. Keränen J., Hakala J., Hongisto V. The sound insulation of façades at frequencies 5–5000 Hz, Build. Environ. (2019). doi:10.1016/j.buildenv.2019.03.061.
7. Lang W.W., Higginson R.F. The evolution of the ISO 3740 series of international standards, in: Int. Congr. Noise Control Eng. 2005. INTERNOISE 2005.
8. Zagorodniuk L.Kh., Lesovik V.S., Sumskoy D.A. Thermal insulation solutions of low density // Building materials and products. 2018. Volume 1. No. 1. S. 40 - 50.
9. Kim H.K., Lee H.K. Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete, Appl. Acoust. 2010. doi:10.1016/j.apacoust.2010.02.001.
10. Chen Y., Yu Q.L., Brouwers H.J.H. Acoustic performance and microstructural analysis of biobased lightweight concrete containing miscanthus, Constr. Build. Mater. 2017. doi:10.1016/j.conbuildmat.2017.09.161.
11. Maa D.Y. Microperforated-panel wideband absorbers, Noise Control Eng. J. 1987. doi:10.3397/1.2827694.
12. Park H.S., Oh B.K., Kim Y., Cho T. Low-frequency impact sound transmission of floating floor: Case study of mortar bed on concrete slab with continuous interlayer, Build. Environ. 2015. doi:10.1016/j.buildenv.2015.06.005.
13. ASTM C423, Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method 1, ASTM Int. 2007. doi:10.1520/C0423-17.2.
14. Elistratkin M.Yu., Kozhukhova M.I. Analysis of factors to increase the strength of non-autoclaved aerated concrete // Building materials and products. 2018. Volume 1. No. 1. S. 59 - 68.
15. Zhuang X.Y., Chen L., Komarneni S., Zhou C.H., Tong D.S., Yang H.M., Yu W.H., Wang H. Fly ash-based geopolymer: clean production, properties and applications. J. Clean. Prod. 125. 2016. 253–267. doi:10.1016/J.JCLEPRO.2016.03.019.
16. Bradley J.S. Using ISO 3382 measures, and their extensions, to evaluate acoustical conditions in concert halls, in: Acoust. Sci. Technol., 2005. doi:10.1250/ast.26.170.
17. Milford I., Høsøien C.O., Løvstad A., Rindel J.H., Klæboe R. Socio-acoustic survey of sound quality in dwellings in Norway, in: Proc. INTER-NOISE 2016 - 45th Int. Congr. Expo. Noise Control Eng. Towar. a Quieter Futur., 2016.
18. International Organization for Standardization, ISO 10534-2, Work. 2001.
19. American Society for Testing and Materials, Standard Test Method for Impedance and Absorption of Acoustical Materials by the Impedance Tube Method, ASTM Philadelphia. (1999). doi:10.1520/C0384-04R11.2.
20. Iwase T., Izumi Y. A new sound tube measuring method for propagation constant in porous material : Method without any air space at the back of test material. J. Acoust. Soc. Japan. 1996. doi:10.20697/jasj.52.6_411.
21. Feng L. Modified impedance tube measurements and energy dissipation inside absorptive materials, Appl. Acoust. 2013. doi:10.1016/j.apacoust.2013.06.013.
22. Mastali M., Kinnunen P., Isomoisio H., Karhu M., Illikainen M. Mechanical and acoustic properties of fiber-reinforced alkali-activated slag foam concretes containing lightweight structural aggregates, Constr. Build. Mater. 2018. doi:10.1016/j.conbuildmat.2018.07.228.
23. ISO 717-1 Acoustics – Rating of sound insulation in buildings and of building elements – Part 1: Airborne sound insulation, Standards. 2013.
24. Mašović D.B., Pavlović D.S.Š., Mijić M.M. On the suitability of ISO 16717-1 reference spectra for rating airborne sound insulation, J. Acoust. Soc. Am. 2013. doi:10.1121/1.4824629.
25. Di Bella A., Granzotto N., Pavarin C. Comparative analysis of thermal and acoustic performance of building elements, in: Proc.. Forum Acust. 2014.
26. Guigou-Carter C., Balanant N. Acoustic comfort evaluation in lightweight wood-based and heavyweight concrete-based buildings, in: INTER-NOISE 2015 - 44th Int. Congr. Expo. Noise Control Eng., 2015.
27. Yang W., Kang J. Acoustic comfort evaluation in urban open public spaces, Appl. Acoust. 2005. doi:10.1016/j.apacoust.2004.07.011.
28. Bradley J.S. Deriving acceptable values for party wall sound insulation from survey results, in: Internoise 2001, 2001.
29. Mihai T., Iordache V., Determining the Indoor Environment Quality for an Educational Building, in: Energy Procedia. 2016. doi:10.1016/j.egypro.2015.12.246.
30. Høsøien C.O., Rindel J.H., Løvstad A., Klæboe R. Impact sound insulation and perceived sound quality, in: Proc. INTER-NOISE 2016 – 45th Int. Congr. Expo. Noise Control Eng. Towar. a Quieter Futur., 2016.
31. Li M., Khelifa M., Khennane A., El Ganaoui M. Structural response of cement-bonded wood composite panels as permanent formwork, Compos. Struct. 2019. doi:10.1016/j.compstruct.2018.10.079.
32. Bondarenko N.I., Bondarenko D.O., Burlakov N.M., Bragina L.L. Investigation of the effect of plasma-chemical modification on the macro- and microstructure of the surface layer of autoclaved wall materials // Building materials and products. 2018. Volume 1. No. 2. S. 4 - 10
33. Hagberg K.G. Evaluating field measurements of impact sound, Build. Acoust. 2010. doi:10.1260/1351-010X.17.2.105.
34. Ljunggren F., Simmons C., Hagberg K. Correlation between sound insulation and occupants’ perception – Proposal of alternative single number rating of impact sound, Appl. Acoust. 2014. doi:10.1016/j.apacoust.2014.04.003.
35. Bodlund K. Alternative reference curves for evaluation of the impact sound insulation between dwellings, J. Sound Vib. 1985. doi:10.1016/S0022-460X(85)80149-8.
36. Hopkins C., Turner P. Field measurement of airborne sound insulation between rooms with non-dif- fuse sound fields at low frequencies, Appl. Acoust. 2005. doi:10.1016/j.apacoust.2005.04.005.
37. Alfimova N.I., Pirieva S.Yu., Gudov D.V., Shurakov I.M., Korbut E.E. Optimization of the prescription and technological parameters of manufacturing aerated concrete mix // Building materials and products. 2018. Volume 1. No. 2. S. 30 - 36.
38. Da Rocha R.E., Maiorino A.V., Dias L.L., Smiderle R., Bertoli S.R. Field investigations of the sound insulation performance in a brazilian public school building, in: INTER-NOISE 2015 – 44th Int. Congr. Expo. Noise Control Eng. 2015.
39. International Organization for Standardization, ISO 14044, 2006.
40. Cassidy M., Cooper R.K., Gault R., Wang J. Evaluation of standards for transmission loss tests, in: Proc. - Eur. Conf. Noise Control. 2008. doi:10.1121/1.2933313.
41. LoVerde J.J., Dong W. Investigation of a two-parameter system of evaluating impact noise insulation, in: 14th Int. Congr. Sound Vib. 2007, ICSV 2007, 2007.
42. Zhang B., Poon C.S. Sound insulation properties of rubberized lightweight aggregate concrete, J. Clean. Prod. 2018. doi:10.1016/j.jclepro.2017.11.044.
43. Elistratkin M.Yu., Minakova A.V., Jamil A.N., Kukovitsky V.V., Eljan Issa Zhamal Issa. Composite binders for finishing compounds // Building materials and products. 2018. Volume 1. No. 2. S. 37 - 44.
44. Holmes N., Browne A., Montague C. Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement, Constr. Build. Mater. 2014. doi:10.1016/j.conbuildmat.2014.09.107.
45. Tada S. Material design of aerated concrete-An optimum performance design, Mater. Struct. 1986. doi:10.1007/BF02472306.
46. Cellular Concretes Part 2 Physical Properties, ACI J. Proc. 1954. doi:10.14359/11795.
47. Jones M.R., Mccarthy M.J., Mccarthy A. Moving fly ash utilisation in concrete forward : A UK perspective, Int. Ash Util. Symp. Cent. Appl. Energy Res. Univ. Kentucky. 2003.
48. Allard J.F., Atalla N. Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, 2009. doi:10.1002/9780470747339.
49. Arnaud L., Gourlay E. Experimental study of parameters influencing mechanical properties of hemp concretes, Constr. Build. Mater. 2012. doi:10.1016/j.conbuildmat.2011.07.052.
Review
For citations:
Fediuk R.S., Baranov A.V., Timokhin R.A. CRITICAL REVIEW OF METHODS FOR EVALUATING ACOUSTIC CHARACTERISTICS OR PREMISES. The Russian Automobile and Highway Industry Journal. 2020;17(2):274-285. (In Russ.) https://doi.org/10.26518/2071-7296-2020-17-2-274-285