Preview

The Russian Automobile and Highway Industry Journal

Advanced search

VORTEX DEVICES OF THE DIESEL AIR SUPPLY SYSTEM: MATHEMATICAL MODEL OF AERODYNAMIC PROCESSES

https://doi.org/10.26518/2071-7296-2020-17-1-110-120

Abstract

Introduction. The calculation of effective indicators of the vortex ejector used in the diesel air supply system is a pressing task as it allows significantly reducing time for determination of rational design parameters at the design stage. One of the modifications of the particle dynamics method is a promising direction, allowing with high physical adequacy, “from the first principles,” to model aerodynamic processes in vortex devices. Therefore, the purpose of the paper is to develop a mathematical model of a vortex ejector.

Materials and methods. The paper discussed a method of the mathematical simulation of ejection and ejection flows in a vortex ejector. The proposed modification of the particle dynamics method allowed describing aerodynamic processes with the help of simple laws of classical dynamics, and modeling them with the help of software of the Delphi 7 System. The author presented differential equations, which were solved by the Runge-Kutt method of the second order. As a result of the solution, the authors determined paths of air elements movement in the vortex ejector, which allowed estimating effective parameters of vortex devices.

Results. To study the model, the author developed a program with the possibility to set geometric parameters of the vortex ejector in the interface window and to display the current values of the process parameters.

Discussion and conclusions. Proposed mathematical model and computer program make it possible to quantify efficiency of vortex devices at their design stage. The advantage of the proposed mathematical model lies in more accurate calculation of vortex flow parameters from the vortex ejector design and physical properties of ejecting and ejecting flows.

Financial transparency: the author has no financial interest in the presented materials or methods. There is no conflict of interest.

About the Author

R. V. Yakimushkin
Army General A.V. Khrulev Military Academy of Logistics
Russian Federation

Roman V. Yakimushkin – Postgraduate Student

644098, Omsk, 14 Voenyi gorodok



References

1. Lashko V.A., Berdnik A.N. Puti sovershenstvovaniya sistem gazoturbinnogo nadduva kom-binirovannyh porshnevyh dvigatelej [Ways to improve gas turbine supercharging systems of combined piston engines]. Vestnik TOGU. 2010; 4(18): 91–100 (in Russian).

2. Lushchenko V.A., Hasanov R.R., Hajrullin A.H., Gureev V.M. Issledovanie raboty elementov turbokompressora dvigatelya vnutrennego sgoraniya [Study of operation of elements of turbo compressor of internal combustion engine]. Izvestiya vysshih uchebnyh zavedenij. Mashinostroenie. Moskva MGTU im. N.E. Baumana. 2017; 12(693): 20–29 (in Russian).

3. Tuzov L.V., Berezhnev V.I. Analiz teplonapryazhennosti sudovyh dizelej [Analysis of heat stress of ship ‘s diesel engines]. Vestnik GUMRF. 2012; 4(16): 18–25 (in Russian).

4. Shabalin D.V., Roslov S.V., Kilunin I.YU., Smolin A.A. Stabilizaciya parametrov nadduvochnogo vozduha s cel’yu obespecheniya optimal’nyh znachenij koefficienta izbytka vozduha v shirokom diapazone skorostnyh i nagruzochnyh rezhimov raboty dizelya [Stabilization of inflatable air parameters in order to ensure optimal values of air excess coefficient in a wide range of speed and load modes of diesel engine operation]. Omskij nauchnyj vestnik. 2014; 3: 102–105 (in Russian).

5. Shabalin D.V. Povyshenie effektivnosti rabochego cikla dizelya optimizaciej temperatury zaryada vozduha [Improving Efficiency of Diesel Operating Cycle by Optimization of Air Charge Temperature]. Sbornik nauchnyh trudov VA MTO im. Generala armii A.V. Hrulyova. 2017; 45707: 34–40 (in Russian).

6. Myrzahmetov B.A., Kadyrov Zh.N., Kochetkov A.V. Silovye energeticheskie ustanovki [Power Plants]. Voennyj vestnik. 2011; 3: 27–29 (in Russian).

7. Malozyomov, A.A. Matematicheskaya model’ dvigatelya na osnove sistemy differencial’nyh uravnenij energeticheskogo i massovogo balansov [Mathematical model of the engine based on the system of differential equations of energy and mass balances]. Nauchnyj vestnik. Povyshenie effektivnosti silovyh ustanovok kolesnyh i gusenichnyh mashin. 2006; 18: 8–15 (in Russian).

8. Selivanov N.I. Potencial’nye tyagovye harakteristiki traktorov na snezhnom pokrove [Potential traction characteristics of tractors on snow cover]. Vestnik KrasGAU. 2005; 7: 200–207 (in Russian).

9. Prabakaran J., Vaidyanathan S. Effect of orifice and pressure of counter flow vortex tube. Indian Journal of Science and Technology. 2010; 3, no 4: 374–376.

10. Piralishvili Sh.A., Gur’yanov A.I., Ivanov R.I. Razrabotka infrakrasnogo gazovogo gorelochnogo ustrojstva na baze vihrevogo ezhektora [Development of an infrared gas burner device based on a vortex ejector]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Korolyova (nacional’nogo issledovatel’skogo universiteta). 2007; 2: 82–86 (in Russian).

11. Kukis V.S., SHabalin D.V. Fizikomatematicheskaya model’ vihrevyh trub dlya regulirovaniya temperatury nadduvochnogo vozduha [Physical and mathematical model of vortex pipes for regulation of supercharging air topics]. Nauchnye problemy transporta Sibiri i Dal’nego Vostoka. 2015; 1: 129–133 (in Russian).

12. Bogomolov S.V., Kuznecov K.V. Metod chastic dlya sistemy uravnenij gazovoj dinamiki [Method of particles for the system of equations of gas dynamics]. Matematicheskoe modelirovanie. 1998; 10. No 7: 93– 100 (in Russian).

13. Monaghan J. Smoothed Particle Hydrodynamics. Annu. Rev. Astron. Astrophys. 1992; 30: 543-574.

14. Brovchenko I.A. Primenenie metodov chastic v zadachah s nestrukturirovannymi setkami [Application of methods of particles in tasks with unstructured grids]. Matematichnі mashini і sistemi. 2010; 3: 111–115 (in Russian).

15. Malyshev V.L., Mar’in D.F., Moiseeva E.F., Gumerov N.A., Ahatov I.SH. Uskorenie mo-lekulyarnodinamicheskogo modelirovaniya nepolyarnyh molekul pri pomoshchi GPU [Acceleration of moleculardynamic modeling of non-polar molecules with the help of GPU]. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2014; 3(1): 126–133 (in Russian).

16. Tarasov D.S., Izotova E.D., Alisheva D.A., Akberova N.I. GPAMM – programmnyj paket dlya raschetov molekulyarnoj dinamiki na graficheskih processorah [GPAMM – software package for calculations of molecular dynamics on graphics processors]. Matematicheskoe modelirovanie. 2009; 21. No 3: 31–40 (in Russian).

17. Kuraev A.A., Rak A.O., Kolosov S.V., Koronovskij A.A., Hramov A.E. Bystryj algoritm chislennogo integrirovaniya uravnenij dvizheniya krupnyh chastic v priborah SVCH [Fast algorithm of numerical integration of equations of motion of large particles in microwave devices]. Zhurnal tekhnicheskoj fiziki. 2014; 84. No 3: 8–13 (in Russian).

18. Hafner J. Atomic-Scale Computation Materials Science. Acta Mater. 2000; 48: 71–92.

19. Ahmetov YU.M., Zangirov E.I. CHislennoe modelirovanie techeniya gaza v vihrevyh ustrojstvah [Numerical simulation of gas flow in vortex devices]. Vestnik UGATU. 2016; 20. no 2(72): 66–73 (in Russian).

20. Wu Y.T., Ding Y., Ji Y.B. Experimental research on vortex tube. Journal of Chemical Industry and Engineering. 2005; 56: 41–44.

21. Bogomolov S.V., Kuznecov K.V. Metod chastic dlya sistemy uravnenij gazovoj dinamiki [Method of particles for the system of equations of gas dynamics]. Matematicheskoe modelirovanie. 1998; 10. No 7: 93– 100 (in Russian).

22. Yurchenko D. Chislennoe modelirovanie techeniya v vihrevoj trube s ispol’zovaniem ANSYS Fluent [Numerical flow simulation in the vortex tube using ANSYS Fluid]. ANSYS Advantage. 2009; 1: 35– 37 (in Russian).


Review

For citations:


Yakimushkin R.V. VORTEX DEVICES OF THE DIESEL AIR SUPPLY SYSTEM: MATHEMATICAL MODEL OF AERODYNAMIC PROCESSES. The Russian Automobile and Highway Industry Journal. 2020;17(1):110-120. (In Russ.) https://doi.org/10.26518/2071-7296-2020-17-1-110-120

Views: 882


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-7296 (Print)
ISSN 2658-5626 (Online)